跳到主要內容

臺灣博碩士論文加值系統

(35.175.191.36) 您好!臺灣時間:2021/07/31 01:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林承衛
研究生(外文):Cheng-Wei Lin
論文名稱:玻璃基板上低溫複晶矽薄膜蕭特基二極體式一氧化碳感測器之研製
論文名稱(外文):Characterization and Preparation of Low Temperature Poly-silicon(LTPS) Thin Film Schottky Diode-Type Carbon Monoxide Sensors
指導教授:方炎坤方炎坤引用關係羅錦興羅錦興引用關係
指導教授(外文):Yean-Kuen FangChing-Hsing Luo
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:94
中文關鍵詞:蕭特基二極體一氧化碳感測器
外文關鍵詞:carbon monoxide sensorSchottky diode
相關次數:
  • 被引用被引用:0
  • 點閱點閱:136
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文是探討利用準分子雷射退火(Excimer Laser Annealing ,ELA)技術在玻璃基板成長的低溫多晶矽薄膜(LTPS)上研製蕭特基MIS二極體式一氧化碳感測器。吾人選擇TiO2, ZnO, 以及SnO2三種材料作為元件的絕緣層。從實驗結果得知,以SnO2對一氧化碳氣體的感測能力最佳。該元件在200℃,逆偏壓3V及3000ppm的CO + air的環境下,其最佳的靈敏度為1560%,並且對於較小濃度(50ppm)的一氧化碳濃度也具有足夠的感測能力。
此外,吾人也研究不同厚度SnO2對於元件感測特性的影響,發現在薄膜厚度為20nm時最好。並針對不同的摻雜類型 LTPS 上所做之元件分析,發現磷摻雜元件之感測性質較佳。另外,吾人探討元件操作溫度對於一氧化碳感測特性的影響。觀察從27℃、100℃,200℃到300℃元件對於一氧化碳氣體的偵測能力,發現溫度越高,感測特性也隨著提升。但到300℃時因MIS元件特性已被破壞,致使元件不再具有感測能力。
In this thesis, we used the excimer laser annealing (ELA) prepared low temperature poly-silicon thin film (LTPS) on glass substrate to fabricate the Schottky diode-type (metal/insulator/semiconductor) carbon monoxide sensors. Three oxides (TiO2, ZnO, and SnO2) were chosen to as the insulator layer. The experimental results show the Schottky diode (Au/ SnO2/c-Si ) has the highest sensitivity (1560%) under 200℃, 3V reverse bias, and 3000ppm CO + air ambient. The sensitivity is higher than that of reported 5.6% of bulk ZnO Schottky diode, and 50% of MO3/TiO2 resistance type under 500ppm CO + ambient. In addition, under the same condition, the sensor showed also an enough sensing ability to 50ppm carbon monoxide.
Furthermore, the effect of various SnO2 thicknesses on the CO sensing ability was investigated, and found the device with 20nm thick SnO2 has the highest sensitivity. Besides, we also improved the property of the LTPS with Phosphorous doping, or Boron doping, and found that the device with the Phosphorous doped LTPS has a better sensing performance. Moreover, a higher operating temperature is better to sense the CO gas, but the sensing function will be lost under 300℃ ,due to the fail of the MIS junction characteristic of the diode.
中文摘要 I
英文摘要 II
目錄 III
圖表目錄 VI

第一章 緒論 1
1-1前言: 1
1-2氣體感測器: 2
1-3一氧化碳特性: 3
1-4低溫多晶矽: 4
1-4-1金屬誘發結晶與金屬誘發橫向結晶: 5
1-4-2固相結晶法: 5
1-4-3準分子雷射退火: 6
1-5論文架構: 7
第二章 元件原理與一氧化碳感測機制 8
2-1 元件基礎理論: 8
2-2 感測器工作原理: 10
2-2-1 氧氣的吸附: 11
2-2-2 氧空格(Oxygen Vacancy): 13
第三章 蕭特基二極體式一氧化碳感測元件之成長系統、製備流程與量測系統 14
3-1 成長系統 14
3-1-1 電漿助長化學氣相沉積系統(PECVD System) 14
3-1-2 射頻磁控濺鍍系統(Radio-Frequency Sputtering System) 16
3-1-3真空熱蒸著系統(Thermal Vacuum Evaporation System) 18
3-1-4退火系統(Annealing System) 19
3-1-5掃描式電子顯微鏡 (FE-SEM) 19
3-1-6原子力顯微鏡 (AFM) 20
3-2 製備流程 20
3-3量測實驗 21
第四章 結果與討論 23
4-1 氧化層對元件之影響 23
4-1-1 Au/TiO2/(n-type Si)結構之元件 23
4-1-2 Au/ZnO/(n-type Si)結構之元件 26
4-1-3 Au/SnO2/(n-type Si)結構之元件 28
4-1-4 綜合討論 30
4-2 以SnO2為氧化層之元件分析 31
4-2-1 Au/SnO2(thickness 35nm)/(n-type Si) 31
4-2-2 Au/SnO2(thickness 50nm)/(n-type Si) 32
4-2-3 Au/SnO2(thickness 20nm)/(p-type Si) 34
4-2-4 不同操作溫度對於感測能力之影響 35
4-2-4 針對SnO2厚度之綜合討論 36
第五章 結論與未來展望 38
5-1 結論 38
5-2 未來展望 39
*參考文獻 40
[1] 蔡嬪嬪 ,曾明漢,“氣體感測器之簡介、應用及市場”, 材料與社會, 第68期 (1992)50.

[2] 蔡嬪嬪 ,曾明漢,“氣體感測器之簡介、應用及市場”, 材料與社會, 第150期六月(1999)92

[3] 蔡嬪嬪 ,“氣體感測器市場發展近況”, 工業材料, 88 期4月(1994)101

[4] Albert L. Love, “Carbon Monoxide in the Home Environment”, University Microfilms International, Michigan (1986).

[5] K. Wark, C. F. Warner and W. T. Davis, “Air pollution: its origin and control”, Addison-Wesley Pub. Co., Massachusetts (1998).

[6] Gilbert M. Masters, “Introduction to Environmental Engineering and Science”, Prentice Hall, New Jersey (1997).
[7] J. H Seinfeld, “Atmospheric Chemistry and Physics of Air Pollution”, Wiley, New York (1986).

[8] “勞工作業環境空氣中有害物容許濃度標準”, 行政院勞工委員會 (2003).

[9] 范盛宏, “金誘發非晶矽薄膜橫向結晶層之研製及特性分析” , 國立成功大學電機工程學系碩士論文,1999。

[10] G. Fortunato, L. Mariucci, R. Carluccio, A. Pecora and V. Foglietti, “Excimer Laser Crystallization Techniques for Polysilicon TFTs” Applied Surface Science, Vol. 154-155, pp.95-104, 2000.

[11] S. J. Moon, M. Lee and C. P. Grigoropoulos, “Heat Transfer and Phase Transformations in Laser Annealing of Thin Si Films” Journal of Heat Transfer, Vol. 124, pp.253-264, 2002.



[12] A. Hadjadj, L. Boufendi, S. Huet, S. Schelz, P. Roca i Cabarrocas, H. Estrade-Szwarckopf and B. Rousseau, “Role of the Surface Roughness in Laser Induced Crystallization of Nanostructured Silicon Films” J. Vac. Sci. Technol., A 18(2), pp.529-535, 2000.

[13] J. S. Im, M. A. Crowder, R. S. Sposili, J. P. Leonard, H. J. Kim, J. H. Yoon, V. V. Gupta, H. Jin Song and H. S. Cho, “Controlled Super-Lateral Growth of Si Films for Microstructural Manipulation and Optimization” phys. stat. sol.(a), Vol. 166, pp.603-617, 1998.

[14] V. L. Rideout, “A Review of the Theory, Technology and Applications of Metal-Semiconductor Rectifiers,” Thin Solid Film, 48,261, 1978.

[15] S. M. Sze, “Physics of semiconductor devices”ch5, wiley, New York, 1980.



[16] Neamen, “Semiconductor physics and device”ch9, p336, McGraw-Hill, 1992.

[17] H.Windischmann and P.Mark,” A model for the operation of a thin film SnOx conductance-modulation carbon monoxide sensor”, Journal of the electrochemical society Vol.126,No.4,pp.627-633 (1979)

[18] S. R. Morrison, “The Chemical Physics of Surfaces,2nd” , New York: Plenum Press, pp. 251 (1990).

[19] N. Yamazoe, J. Fuchigami, M. Kishikawa and T.Seiyama, “Interactions of tin oxide surface with O2, H2O and H2”, Surface Science, Vol. 86, pp. 335-344 (1979).

[20] K. M. Sancier, “ESR evidence of CO oxidation by more than one oxygen species sorbed on ZnO”, Journal of Catalysis, Vol. 9, pp.331-335 (1967)

[21] S. C. Chang, “Thin-film semiconductor NOx sensor”, IEEE Transactions on Electron Devices, Vol. ED-26, No. 12, pp.1875-1880 (December 1979).

[22] Pere ROCA i CABARROCAS, Anna FONTCUBERTA I MORRAL, Billel KALACHE, and Samir KASOUIT, “Microcrystalline Silicon Thin Films Grown by PECVD. Growth Mechanisms and Grain Size Control,” Solid State Phenomena, Vol. 93, pp. 257-268, 2003

[23] I. W. Wu, T. Y. Huang, W. B. Jackson, A. G. Lewis, and A. Chiang, “Passivation Kinetics of Two Types of Defects in Polysilicon TFT by Plasma Hydrogenation,” IEEE Electron Dev. Lett.,EDL-12,181 ,1991

[24] X. L. Jiang, Y. L. He, H. L. Zhu, “The effect of passivation of boron dopants by hydrogen in nano-crystalline and micro-crystalline silicon films” J. Phys.: Condens. Matter 6,pp. 713-718, 1994.



[25] K Galatsis, YX Li, W Wlodarski, E Comini, G Sherveglieri, C Cantalini. et al.”Comparison of single and binary oxide MoO3, TiO2 and WO3 sol–gel gas sensors.“ Sensors Actuators B, 2002;83:276–80.

[26] W Hellmich, G Muller, ChB Braunmuhl, T Doll, I Eisele. “Field-effectinduced gas sensitivity changes in metal oxides.” Sensors Actuators B 1997;43:132–9.

[27] A Galdikas, S Kaˇciulis, G Mattogno, A Mironas, D Senuliene, A Šetkus. “Stability and oxidation of the sandwich type gas sensors based on thin metal films.” Sensors Actuators B 1998;48:376–82.

[28] N Yamamoto, S Tonomura, T Matsuoka, H Tsubomura.” A study on a palladium–titanium oxide Schottky diode as a detector for gaseous components.” Surf Sci 1980;92:400–6.

[29] I Hayakawa, Y Iwamoto, K Kikuta, S Hirano.” Gas sensing properties of platinum dispersed-TiO2 thin film derived from precursor.” Sensors Actuators B 2000;62:55–60.
[30]Savage NO, Akbar SA, Dutta PK. “Titanium dioxide based high temperature carbon monoxide selective sensor.” Sensors Actuators B 2001;72:239–48.

[31] M Ferroni, MC Carotta, V Guidi, G Martinelli, F Ronconi, O Richard. et al. “Structural characterization of Nb–TiO2 nanosized thick-films for gas sensing application.” Sensors Actuators B 2000;68:140–5.

[32] Y Nakamura, H Zhuang, A Kishimoto, O Okada, H Yanagida. “Enhanced CO and CO2 gas sensitivity of the CuO/ZnO heterocontact made by quenched CuO ceramics.” J Electrochem Soc 1998;145:632–8.

[33]B.S. Kang, S.Kim, F. Ren, K.Ip , Y.W. Heo, B.P. Gila, C.R. Abernathy, D.P. Norton and S.J. Pearton. “Detection of CO using bulk ZnO Schottky rectifiers ” Appl. Phys. A 80, 259–261 (2005)


[34] A. Wisitsoraat , A. Tuantranont , E.Comini , G.Sberveglieri , and W. Wlodarski ,“Gas Sensing Properties of TiO2-WO3 and TiO2-MO3 Based Thin Film Prepared by Ion-assisted E-beam Evaporation” , IEEE 1184-1187 (2005)

[35] F Hernandez-Ramirez, S Barth , A Tarancon , O Casals , E Pellicer , J Rodriguez , A Romano-Rodriguez , J R Morante , S Mathur “ Water vapor detection with individual tin oxide nanowires ” Nanotechnology 18 (2007) 424016 (6pp)

[36] Nguyen Duc Hoa, Nguyen Van Quy, You Suk Cho, Dojin Kim “Nanocomposite of SWNTs and SnO2 fabricated by soldering process for ammonia gas sensor application” phys. stat. sol. (a) 204, No. 6, 1820–1824 (2007)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top