跳到主要內容

臺灣博碩士論文加值系統

(3.236.23.193) 您好!臺灣時間:2021/07/24 14:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李光傑
研究生(外文):Guang-jie Lee
論文名稱:x(Mg0.95Zn0.05)TiO3-(1-x)(Na0.5La0.5)TiO3微波介電材料之研究與應用
論文名稱(外文):Study and Applications of x(Mg0.95Zn0.05)TiO3-(1-x)(Na0.5La0.5)TiO3 Microwave Dielectric Materials
指導教授:黃正亮
指導教授(外文):Cheng-Liang Huang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:101
中文關鍵詞:陶瓷微波
外文關鍵詞:microwaveceramic
相關次數:
  • 被引用被引用:1
  • 點閱點閱:177
  • 評分評分:
  • 下載下載:21
  • 收藏至我的研究室書目清單書目收藏:0
本論文將討論介電陶瓷材料x(Mg0.95Zn0.05)TiO3-(1-x)Na0.5La0.5TiO3系統,藉由正負共振頻率溫度係數,使其達到共振頻率溫度係數為零值。(Mg0.95Zn0.05)TiO3 的微波特性為 ~17.1,Q × f ~264,000在9GHz以及 約-40 ppm/℃;Na0.5La0.5TiO3為 ~122, Q × f ~9800以及 約480 ppm/℃,調整x值使其頻率溫度飄移係數趨近於零。除此之外,嘗試添加不同燒結促進劑B2O3、CuO,探討其添加量對材料微波特性的影響。實驗結果顯示,當x=0.88且燒結溫度在1300℃持溫4小時下具有良好的微波特性:Q×f~103000(9GHz), ~23.39, ~1.1(ppm/)℃。
最後,本論文以FR4、氧化鋁、自製基板,使用雙模態曲折形環形共振器製作設計一中心頻率定為2GHz的帶通濾波器,再利用電腦模擬與實做量測結果比較。
The microwave properties of x(Mg0.95Zn0.05)TiO3-(1-x)Na0.5La0.5TiO3 dielectric ceramic materials have been discussed in this paper.Using positive and negative temperature coefficients would achieve zero temperature coefficient of resonant frequency. Na0.8La0.5TiO3 has dielectric properties of ~122,Q × f value ~9800 and a positive value ~ 480 ppm/℃. (Mg0.95Zn0.05)TiO3 possesses high dielectric constant ( ~17),high quality factor (Q × f ~260,000 at 9GHz) and negative value(-40 ppm/℃).By appropriately adjusting the x value in the x(Mg0.95Zn0.05)TiO3-(1-x)Na0.5La0.5TiO3 ceramic system, zero value can be achieved. The experiment results show that it has excellent dielectric properties(Q×f~103000(9GHz), ~23.39, ~1.1ppm/oC) when x value equal to 0.88. Besides, we attempt to add different sintering aids B2O3 and CuO respectively and discuss the effects of the microwave properties by various amounts of sintered aids. 0.88(Mg0.95Zn0.05)TiO3-0.12Na0.5La0.5TiO3.
Finally, we design and fabricate a band-pass filter using dual-mode meader loop resonators with 2GHz center frequency on FR4、Al2O3、88MZNLT substrate respectively. And we compared with the result of the simulation and measurement.
第一章 緒論 1
1-1前言 1
1-2研究目的 1
第二章 介電材料原理 2
2-1介電材料的微波電性分析 2
2-2介電共振器(Dielectric Resonator, DR) 8
2-3 鈦鐵礦與鈣鈦礦之結構 11
2-3-1 鈦鐵礦之結構 11
2-3-2 鈣鈦礦之結構 12
2-4 燒結原理 13
2-4-1 液相燒結理論 14
2-4-2影響燒結的幾個因素 15
第三章 微帶線及濾波器之原理 16
3-1 微帶線原理 16
3-1-1 微帶傳輸線介紹 16
3-1-2 微帶線傳輸組態 16
3-1-3 微帶線各項參數公式計算及考量 17
3-1-4 微帶線的損失 19
3-1-4 微帶線的不連續效應: 21
3-2 微帶線濾波器簡介 23
3-3 雙模態帶通濾波器 25
3-3-1 雙模態濾波器介紹 25
3-3-2 雙模態濾波器原理 26
3-3-3 分裂共振模態 27
3-4 雙模態曲折形帶通共振器 28
第四章 實驗程序與量測方法 29
4-1 微波介電材料的製程 29
4-1-1 xMg0.95Zn0.05TiO3-(1-x)Na0.5La0.5TiO3之製程 29
4-1-2 0.88Mg0.95Zn0.05TiO3-0.12Na0.5La0.5TiO3添加燒結促進劑之製程 30
4-2 微波介電材料的特性分析與量測 32
4-2-1 X-Ray(XRD)分析 32
4-2-2 掃瞄式電子顯微鏡(SEM)分析 32
4-2-3密度之量測 32
4-2-4 微波介電特性的量測 33
4-3 濾波器之製作與量測 39
4-3-1 濾波器設計規格 39
4-3-2 濾波器製作 39
4-3-3 濾波器量測 40
第五章 實驗結果與討論 41
5-1 x(Mg0.95Zn0.05)TiO3-(1-x)(Na0.5La0.5)TiO3微波特性之探討 41
5-1-1 x(Mg0.95Zn0.05)TiO3-(1-x)(Na0.5La0.5)TiO3微波特性之探討 41
5-2 88MZNLT 添加B2O3以及CuO之微波特性探討 53
5-2-1 88MZNLT 添加燒結促進劑B2O3之微波特性探討 53
5-2-1 88MZNLT 添加燒結促進劑CuO之微波特性探討 63
5-3 濾波器的響應 72
5-3-1 FR4基板 72
5-3-2 Al2O3基板 75
5-3-3 88MZNLT基板 78
第六章 結論 81
參考文獻 83
[1] 劉士生, “(Mg0.95Zn0.05)TiO3介電陶瓷之微波特性及其應用”, 國立成功大學碩士論文, 2004
[2] H. Takahashi, Y. Baba, K. Ezaki, Y. Okamoto, K. Shibata, K. Kuroki and S. Nakano, “Dielectric Characteristics of Ceramics at Microwave Frequencies,” Jpn. J. Appl. Phys. vol. 30, pp. 2339-2342,1991
[3]R. D. Richtmyer, “Dielectric Resonator” J. Appl. phys., vol.10, pp.391-398, 1939.
[4] S. B. Chon, “ Microwave Bandpass Filters Contain High Q Dielectric Resonator ”, IEEE. Trans. on MTT, pp. 218-227, 1968.
[5] David M. Pozar “Microwave Engineering”, Addison-Wesley,1998
[6] D. Kajfez, “Computed model field distribution for isolated dielectric resonator-s”, IEEE. Trans. Microwave Theory Tech., vol. MTT-32, pp. 1609-1616, Dec. 1984.
[7] D. Kajfez, “Basic principle give understanding of dielectric waveguides and
resonators”, Microwave System News., vol. 13, pp. 152-161, 1983.
[8] D. Kajfez, and P. Guillon, Dielectric resonators, New York: Artech House, 1989.
[9] 吳朗, 電工材料, 滄海書局, 87年2月.
[10] V. N. Eremenko, Y. V. Naidich, and I. Aienko, Liquid phase sintering., New York:
Consultants Bureau, 1970, ch.
[11] K. S. Hwang, Phd. Thesis, Rensselaer Ploytechnic in Troy, 1984.
[12] J. W. Cahn, and R. B. Heady, “Analysis of capillary forces in liquid-phase sintering
of jagged particles”, J. Am. Ceram. Soc., vol. 53, pp. 406-409, Jul. 1970.
[13] A. M. GLAZER, Acta Cryst., vol. A31, pp. 756, 1975.
[14] E. L. COLLA, I. M. REANEY and N. SETTER, Jpn. J. Appl. Phys., vol. 74, pp.
3414, 1993.
[15] A. Meden and M. Ceh, Material Science Forum 773, pp. 278-281, 1998.
[16] 鄭景太, 淺談高頻低損失介電材料, 工業材料, 176期 90年8月.
[17] Brian C. Wadell,Transmission line design handbook, chap5.
[18] L. A. Trinogga, Guo Kaizhou, and I. C. Hunter, Practical microstrip circuit
design., UK: Ellis Horwood, 1991.
[19] R. A. Pucel, D. J. Masse, and C. E Hartwig, “Losses in microstrip,” IEEE. Trans.
Microwave Theory Tech., vol. MIT-16, pp. 342-350, Jun. 1968.
[20] G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave filters impedance-
mattching, networks, and coupling structures., New York: McGraw-Hill, 1980.
[21] R. A. Pucel, D. J. Masse, and C. E Hartwig, “Losses in microstrip,” IEEE. Trans.
Microwave Theory Tech., vol. MIT-16, pp. 342-350, Jun. 1968.
[22] G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave filters impedance-
mattching, networks, and coupling structures., New York: McGraw-Hill, 1980.
[23] V. Nalbandian, and W. Steenart, “Discontinunity in symmetric striplines due to
impedance step and their compensations,” IEEE Trans. Microwave Theory Tech.,
vol. MTT-20, pp. 573-578, Sep. 1980.
[24] 張盛富,戴明鳳,無線通信之射頻被動電路設計,全華出版社,1998.
[25] K. C. Gupta, R. Garg, I. Bahl, and E. Bhartis, Microstrip lines and slotlines, second
edition., Boston: Artech House, 1996.
[26] R. L. Geiger, P. E. Allen, N.R.Strader, VLSI design techniques for analog and digital
circuits., New York: McGraw-Hill, 1990, pp. 674-685.
[27] I. Wolff, “Microstrip bandpass filters using degenerate modes of microstrip ring
resonator,” Electron. Lett., vol. 8, no. 12, pp. 163–164, June. 1972.
[28] J.-S. Hong and M. J. Lancaster, “Microstrip bandpass filter using degenerate modes
of a novel meander loop resonator,” IEEE Microwave and Guided Wave Letters, 5,
11, Nov. 1995, 371–372.
[29] M. Matsuo, H. Yabuki, M. Makimoto, “Dual-mode stepped-impedance ring
Resonator for bandpass filter applications,” IEEE Trans. Microwave Theory Tech.,
Vol. 49, pp. 1235-1240, Jul. 2001.
[30] H. A. Wheeler, “Transmission line properties of parallel strips separated by a
dielectric sheet,” IEEE Trans., MTT-13, May 1965, 172–185; “Transmission line
properties of a strip on a dielectric sheet on a plane,” IEEE Trans., MTT-25, pp.
631–647, Aug. 1977,.
[31]P. Wheless, and D. Kajfez “The use of higher resonant modes in measuring the dialectric constant of Dielectric Resonators,” IEEE MTT-S Symposium Dig.,pp. 473-476, 1985.
[32] Y. Kobayashi, and N. Katoh, “Microwave measurement of dielectric properties
of low-loss materials by dielectric rod resonator method,” IEEE Trans. Micr-
owave Theory Tech., vol. MTT-33, pp. 586-592, 1985.
[33] Y. Kobayashi, and S. Tanaka, "Resonant modes of a dielectric resonator
short-circuited at both ends by parallel conducting plates," IEEE. Trans. MicrowaveTheory Tech., vol. MTT-28, pp. 1077-1085, 1980.
[34] B. W. Hakki and P. D. Coleman, “A Dielectric Resonator Method of Measuring
Inductive Capacities in the Millimeter range,” IEEE Trans. MTT, vol. MTTS, pp.
402-410, 1960.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top