跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2024/12/06 15:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:顏昕皓
研究生(外文):Hsin-Hao Yen
論文名稱:燒結促進劑對Nd(Zn1/2Ti1/2)O3陶瓷之微波介電特性之影響與其應用
論文名稱(外文):Influence of Sintering Aids on Dielectric Properties of Nd(Zn1/2Ti1/2)O3 Ceramics and Their Applications at Microwave Frequency
指導教授:黃正亮
指導教授(外文):Cheng-Liang Huang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:95
中文關鍵詞:燒結促進劑Nd(Zn1/2Ti1/2)O3微波介電特性
外文關鍵詞:Sintering AidsNd(Zn1/2Ti1/2)O3Microwave FrequencyDielectric Properties
相關次數:
  • 被引用被引用:0
  • 點閱點閱:182
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文將討論介電陶瓷材料Nd(Zn1/2Ti1/2)O3,添加不同燒結促進劑B2O3 、V2O5 與ZnO,探討燒結促進劑對Nd(Zn1/2Ti1/2)O3 其微波特性的影響及在高頻的應用。文獻顯示,原始的Nd(Zn1/2Ti1/2)O3 燒結溫度必須達到1330 ℃,此時可得介電特性εr~31.6, Q×f ~170000 (8.5GHz) ,τf ~-42 (ppm/oC)。由實驗結果發現,在1300℃燒結且添加0.70 wt% ZnO 於Nd(Zn1/2Ti1/2)O3 時,具有最佳的介電特性﹔εr ~32.26, Q×f ~128000 (7.7GHz),τf ~45 (ppm/oC) 的最佳特性,確實有達到降低燒結溫度之效果。
最後,本論文利用印刷電路板的方式,製作一個具有可調式零點的高頻帶通濾波器,操作頻段涵蓋2.0 GHz,使用之基板則分別為FR4 ,Al2O3 ,及添加了燒結促進劑ZnO 之Nd(Zn1/2Ti1/2)O3 三種材料。比較使用不同基板的濾波器響應以及元件尺寸,可以發現應用於同一電路上,具有高介電常數(εr)的自製基板可以達到縮小電路面積的效果,且有更好的濾波特性。
The influence of sintering aids on dielectric properties of Nd(Zn1/2Ti1/2)O3 ceramic at microwave frequency would be discussed in this paper. We expected to decrease the
sintering temperature of Nd(Zn1/2Ti1/2)O3 by adding three kinds of different sintering aids : Fe2O3、ZnO and V2O5 respectively.
The experiment results showed that adding 0.75 wt% ZnO could not only achieve the goal of reducing sintering temperature but also reach to the best dielectric properties amount three kinds of sintering aids. Adding 0.75 wt% ZnO has high dielectric constant(εr) of 32.26,Q×f ~128000 (7.7GHz) and τf ~-45 (ppm/oC) while reducing the sintering temperature from 1330 oC to 1300 oC.
In the end, we designed and fabricated a microstrip band pass filters with one tunable transmission zero in upper band of mid-band frequency 2.0 GHz on FR4 、Al2O3 and
Nd(Zn1/2Ti1/2)O3 + 0.75 wt% ZnO substrates. We could find that with the higher dielectric constant(εr) and Q×f , our filter could diminish the scale of size and demonstrate better frequency response.
第一章 緒論......................................................................................................................... 1
1-1 前言...................................................................................................................... 1
1-2 研究目的.............................................................................................................. 1
第二章 介電材料原理....................................................................................................... 3
2-1 材料的微波特性.................................................................................................. 3
2-2 介電共振器理論.................................................................................................. 8
2-3 介電共振器.......................................................................................................... 9
2-4 鈣鈦礦之結構.......................................................................................................11
2-5 燒結理論及工藝................................................................................................ 12
2-5-1 燒結的種類.............................................................................................. 13
2-5-2 影響燒結的幾個因素.............................................................................. 15
2-5-3 液相燒結理論.......................................................................................... 15
第三章 微帶線與濾波器原理......................................................................................... 17
3-1 微帶線的原理.................................................................................................... 17
3-1-1 微帶線傳輸組態...................................................................................... 17
3-1-2 微帶線各項參數公式計算...................................................................... 18
3-1-3 微帶線各項考量.................................................................................... 21
3-2 濾波器簡介........................................................................................................ 25
3-3 微帶線諧振器種類............................................................................................ 26
3-3-1 四分之一波長短路微帶線諧振器.......................................................... 27
3-3-1 二分之一波長開路微帶線諧振器.......................................................... 28
3-4 共振器間的耦合形式........................................................................................ 29
V
3-4-1 電場耦合................................................................................................... 30
3-4-2 磁場耦合.................................................................................................. 33
3-4-3 混和耦合.................................................................................................. 36
3-5 四分之一波長的阻抗轉換器與開路殘段(open stub) .................................... 38
3-6 反對稱式饋入磁場耦合濾波器設計............................................................... 40
第四章 實驗程序............................................................................................................. 43
4-1 微波介電材料的製備與特性量測流程圖....................................................... 43
4-1-1 微波介電材料的製備步驟...................................................................... 43
4-2 微波介電材料的特性分析與量測................................................................... 46
4-2-1 X-Ray 分析(XRD) .............................................................................. 46
4-2-2 掃瞄式電子顯微鏡(SEM)分析......................................................... 46
4-2-3 密度之量測.............................................................................................. 46
4-2-4 微波特性的量測...................................................................................... 47
4-3 濾波器之製作與量測........................................................................................ 53
4-3-1 濾波器規格.............................................................................................. 53
4-3-2 濾波器實作.............................................................................................. 54
4-3-3 特性量測.................................................................................................. 54
第五章 實驗結果與討論................................................................................................... 56
5-1 Nd(Zn1/2Ti1/2)O3 之微波特性之探討.................................................................. 56
5-1-1 Nd(Zn1/2Ti1/2)O3 添加燒結促進劑Fe2O3 ............................................... 56
5-1-2 Nd(Zn1/2Ti1/2)O3 添加燒結促進劑V2O5................................................. 67
5-1-3 Nd(Zn1/2Ti1/2)O3 添加燒結促進劑 ZnO................................................ 76
5-2 濾波器的響應...................................................................................................... 84
5-2-1 FR4 基板................................................................................................... 84
5-2-2 Al2O3 基板................................................................................................. 86
VI
5-2-3 Nd(Zn1/2Ti1/2)O3 + 0.75 wt% ZnO 基板................................................. 88
5-2-4 不同基板的濾波器特性比較與誤差探討............................................... 91
第六章 結論....................................................................................................................... 94
參考文獻................................................................................................................................ i
[1] Okaya, Proc. IRE, vol.48, pp.1921, 1960.
[2] H. M. O’Brryan, JR. and J.Thomson, JR., J.Am.Ceram.Soc., vol. 57,pp.450, 1974.
[3] G. Wolfram and H. E. Gobel, Mat. Res. Bull. Vol.16, pp.1455, 1981.
[4] S. Nishgaki, H. Kato, S. Yano and R. Kamamura, Am. Ceram. Soc.Bull., vol.66,
pp.1405, 1987.
[5] J.-H. Sohn, Y. Inaguma, S.-O. Yoon, M. Itoh, T. Nakamura, S.-J. Yoonand H.-J Kim,
“Microwave Dielectric Characteristics of Ilmenite-TypeTitanates with High Q Values”,
J. Appl. phys., vol.33, pp.5466-5470,1994.
[6] R. D. Richtmyer, “Dielectric Resonator” J. Appl. phys., vol.10,pp.391-398, 1939.
[7] S. B. Cohn, “Microwave Bandpass Filters Contain High Q Dielectric Resonator”,
IEEE Trans. on MTT, pp.218-227, 1968.
[8] 鄭景太, 淺談高頻低損失介電材料, 工業材料, 176 期 90 年8 月.
[9] Darko Kajfez and Pierre Guillon, “Dielectric Resonators”, University of Mississippi.
[10] F. V. Lenel, “Sintering in Presence of a Liquid Phase”, Trans. Am. Inst.Mining. Met.
Engrs, pp.878-905, 1948.
[11] D. Kajfez, “Computed model field distribution for isolated dielectric resonator-s,”
IEEE. Trans. Microwave Theory Tech., vol. MTT-32, pp. 1609-1616, Dec. 1984.
[12] D. Kajfez, “Basic principle give understanding of dielectric waveguides and
resonators,” Microwave System News., vol. 13, pp. 152-161, 1983.
[13] D. Kajfez, and P. Guillon, Dielectric resonators., New York: Artech House,1989.
[14] J.-H. Sohn, Y. Inaguma, S.-O. Yoon, M. Itoh, T. Nakamura, S.-J. Yoon and H.-J Kim,
“Microwave Dielectric Characteristics of Ilmenite-Type Titanates with High Q
Values”, J. Appl. phys., vol.33, pp.5466-5470.
ii
[15] SCHAFFER SAXENA ANTOLOVICH SANDERS WARNER,“The Science and
Design of Engineering Materials”,Chap3.
[16] 肖定全,陶瓷材料,新文京開發出版,p49-55,2003.
[17] V. N. Eremenko, Y. V. Naidich, and I. Aienko, Liquid phase sintering., New York:
Consultants Bureau, 1970, ch. 4.
[18] W.J.Huppmann and G.Petzow “The Elementary Mechanisms of Liquid Sintering”,
Sintering Processes, Plenum Press, pp. 189-202, 1979.
[19] K. S. Hwang, Phd. Thesis, Rensselaer Ploytechnic in Troy(1984).
[20] J. W. Cahn, and R. B. Heady, “Analysis of capillary forces in liquid-phase s-intering
of jagged particles,” J. Am. Ceram. Soc., vol. 53, pp. 406-409, Jul. 1970.
[21] W. J. Huppmann, and G. Petzow, Sintering processes., New York: Plenum Pr-ess, pp.
189-202, 1979.
[22] W. J. Huppmann, and G. Petzow, Ber. bunnsenges phys. chem., 82, pp. 308, 1978.
[23] R. M. German, Liquid phase sintering., New York: Plenum Press, 1985, ch. 4.
[24] J. H. Jean, and C. H. Lin, “Coarsening of tungsten particles in W-Ni-Fe allo-ys,” J.
Mater. Sci., vol. 24, pp. 500-504, Feb. 1989.
[25] L. A. Trinogga, Guo Kaizhou, and I. C. Hunter, Practical microstrip circuit design.,
UK: Ellis Horwood, 1991.
[26] David M. Pozar, Microwave engineering., Reading: Addison-Wesley, 1998
[27] R. A. Pucel, D. J. Masse, and C. E Hartwig, “Losses in microstrip,” IEEE. Trans.
Microwave Theory Tech., vol. MIT-16, pp. 342-350, Jun. 1968.
[28] G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave filters impedancemattching,
networks, and coupling structures., New York: McGraw-Hill, 1980.
[29] V. Nalbandian, and W. Steenart, “Discontinunity in symmetric striplines due to
impedance step and their compensations,” IEEE Trans. Microwave Theory Te-ch., vol.
iii
MTT-20, pp. 573-578, Sep. 1980.
[30] 張盛富,戴明鳳,無線通信之射頻被動電路設計,全華出版社,1998.
[31] K. C. Gupta, R. Garg, I. Bahl, and E. Bhartis, Microstrip lines and slotlines, second
edition., Boston: Artech House, 1996.
[32] J. S. Hong, and M. J. Lancaster, “Couplings of microstrip square open-loop
r-esonators for cross-coupled planar microwave filters,” IEEE Trans.
MicrowaveTheory Tech., vol. 44, pp. 2099-2109, Nov. 1996.
[33] T. Edwards, Foundations for microstrip circuit design, second edition., UK: Wiley,
1991.
[34] J. S. Wong, “Microstrip tapped-line filter design,” IEEE Trans. Microwave Theory
Tech, vol. MTT-27, pp.44-50, Jan.1979.
[35] International Telephone and Telegraph Corp., Reference Data for Radio Engineers,6th
Ed. Howard W. Sams Co., Inc.
[36] S. H. Cha: IEEE. Trans. MTT, vol.MTT-33, pp.519, 1985.
[37] Yong Zhong Zhu and Yong Jun Xie, “New λ/2 Microstrip Bandpass Filters Using
Skew-Symmetric Feed Structure”, Microwave and Optical Technology Letters,Vol.
50, No. 2, pp.440-442 February 2008.
[38] Alexander Hennings, Elena Semouchkina, Amanda Baker, and George Semouchkin,”
Design Optimization and Implementation of Bandpass Filters With Normally Fed
Microstrip Resonators Loaded by High-Permittivity Dielectric”, IEEE Trans.
Microwave Theory Tech ,Vol.54 ,No.3 ,pp. 1253-1261, March 2006
[39] George I. Zysman and A. Kent Johnson ,”Couple Transmission Line Networks in an
Inhomogeneous Dielectric Medium”, IEEE Trans. Microwave Theory Tech ,Vol.
MTT-17 ,No.10,pp. 753-759, October 1969.
[40] M. Matsuo, H. Yabuki and M. Makimoto, “The Design Of a Half-wavelength
iv
Resonator BPF with Attenuation Poles at Desired Frequencies”, IEEE MIT-S Digest
pp.1181-1184,2000
[41] 傅坤幅, 微波陶瓷材料介電特性量測,工業材料, 132 期, 86 年12 月.
[42] 陳威銘, “微波平面U行微帶線帶通濾波器之研製,”國立成功大學電機工程系碩士
論文,1999.
[43] Ching-Fang Tseng, Cheng-Liang Huang, and Wen-Ruei Yang, “Dielectric
Characteristics of Nd(Zn1/2Ti1/2)O3 Ceramics at Microwave Frequency”, J. Am. Soc
89[4] 1465-1470, 2006
[44] Junichi TAKAHASHI, Keisuke KAGEYMA and Kouhei KODAIRA, “Microwave
Dielectric Properties of Lanthanide Titanate Ceramics”, Jpn J. Appl. Phys. Vol. 32, pp
4327-4331,September 1993.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top