跳到主要內容

臺灣博碩士論文加值系統

(35.175.191.36) 您好!臺灣時間:2021/08/02 15:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:顏志達
研究生(外文):Chih-Ta Yen
論文名稱:光通訊分碼多重擷取技術及光纖微波擷取網路之非線性效應的探討
論文名稱(外文):Nonlinear Effect on Optical CDMA Techniques and Radio-over-Fiber Access Networks
指導教授:黃振發黃振發引用關係
指導教授(外文):Jen-Fa Huang
學位類別:博士
校院名稱:國立成功大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:173
中文關鍵詞:非線性效應光纖微波網路光等化器光分碼多工極化多工拉曼放大器
外文關鍵詞:Nonlinear effectRadio-over-Fiber (RoF)Optical code-division multiple-access (OCDMA)Polarization-division-multiplexing (PDM)Optical equalizerFiber Raman amplifier (FRA)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:367
  • 評分評分:
  • 下載下載:65
  • 收藏至我的研究室書目清單書目收藏:0
光分碼多工技術(Optical Code-Division Multiple-Access, OCDMA)被視為是區域網路的最佳選擇,因為它可在一個具bursty traffic的環境下提供高的統計多工增益。早期的非同調光分碼多工系統在時域上使用類正交序碼對信號編碼,但這些碼不僅長度很長,而且多重擷取干擾(multiple access interference)限制了系統的同時使用者數。因此有人提出頻域振幅編碼(spectral-amplitude-coding)光分碼多工系統來解決多重擷取干擾的問題。在這本論文中我們首先提出以陣列波導光柵路由器(arrayed-waveguide grating)為基礎的頻域振幅編碼光分碼多重擷取系統。頻域振幅編碼技術能夠消除多重擷取干擾的前提必須在驅動寬頻光源的輸出經過光濾波器後的頻譜為平坦時才能夠達到。一般商業用的寬頻光源的輸出頻譜與光濾波器的頻率響應卻存在著輸出不平坦的特性,經過濾波輸出後所形成的編碼chip將會存在著能量不相等的特性,這個編碼不相等的特性將會在接收端引發嚴重的多重擷取干擾。chip頻譜補償應用背向泵激光纖拉曼放大器於頻域振幅編碼光分碼多工系統來抑制多重擷取干擾因此被提出。在這個系統中我們採用了基因演算法(genetic algorithm, GA)與線性矩陣轉換法來快速找到理想的泵激功率以及理想的泵激波長,來實現光等化器應用於光分碼多工系統中。在加入頻譜補償器後可驗證系統訊號對干擾雜訊比(signal-to-interference, SIR)將可以改善至20 dB。   

光分碼多工系統可以使用布雷格光纖光柵(fiber Bragg gratings)來做為編/解碼器,但是當系統所提供的使用者數目變多時,每個使用者的碼句將變長,以致於布雷格光柵編/解碼器必須有更多單一波長的布雷格光柵串接。這將導致更多的插入損耗,也使編/解碼器的物理尺寸變得不切實際。除此以外,有限的寬頻光源頻寬也限制了系統所能提供的所有使用者數目。因此我們提出一個頻域振幅編碼光分碼多工系統藉由極化多工技術(polarization-division multiplexing)來完成。在本篇論文中,我們提出了多階光頻振幅編碼系統。此系統利用Hadamard code的類正交序碼特性,建構了以布雷格光纖光柵(fiber Bragg gratings, FBGs)為基礎的編/解碼器,且每一編/解碼器對提供給兩個使用者共用。在相同使用者數目的條件下,和先前的光頻振幅編碼系統作比較,我們提出的架構不僅僅是編/解碼器數目減少一半,所需的編碼長度亦為一半。由於我們使用了多階光頻振幅編碼,較大強度的訊號所引起的相位引致強度雜訊會降低系統效能,更甚於較低強度訊號所引起的。為了抑制相位引致強度雜訊,我們提出了兩種方法。第一,共用同一編碼器的兩個使用者以相互正交的極化狀態傳送光訊號;第二,從接收端來看,我們架構了多路平衡檢測器(multiple balanced detectors, MBD) 來抑制雜訊。第一種方法,是利用當兩個光訊號的極化狀態為正交時,不會引起相位引致強度雜訊。第二種方法,則是利用當較低功率的光源照射在光檢測器上時,所引起的相位引致強度雜訊也較小。因此在我們所提出的系統架構中,可以減少所需的編碼長度和編/解碼器數目,且能抑制雜訊以逹到較佳的系統效能。

在無線多媒體通訊系統的發展之下,傳輸的系統被需求擁有大量頻寬來傳輸各式各樣聲音,資料,影像。光纖微波網路(Radio-over-Fiber, RoF)是一個良好的解決方案。只要利用有限數目的基地台來接收無線傳輸訊號,中間利用光纖傳輸再傳到接收端便可達成,如此方式除了節省單純無線傳輸中繼站的成本,且藉由光傳輸環境也讓頻寬配置增加了系統網路彈性。在這篇研究中,提出兩種光分碼多工處理的架構來實現光纖微波高速網路,首先是架構在頻譜域,利用陣列波導光柵的特性,把寬頻光源分割成多個波長並且達成最大長度序碼(maximum length sequence , M-sequence)的編碼,而這種方式編/解碼的架構方式為頻域振幅編碼之光分碼多工系統。而第二種我們主要是在時域上作展頻的動作,利用光切換器(Optical Switch, OSW)達成開關鍵移的光時域編碼,而這種方式我們稱為直接光切換器光分碼多工(Direct Optical Switching-Optical Code Division Multiple Access, DOS-OCDMA)系統。而其研究結果顯示,當我們考慮光源成本時,利用SAC-OCDMA可使用比雷射便宜且需求量較少的寬頻光源,但是在DOS-OCDMA系統卻能較有效的改善系統效能。但無論使用哪種方式,光調變指數(Optical Modulation Index, OMI)都是一個重要影響系統效能的參數。在低的光調變指數時,光元件的雜訊為主要引響系統效能的參數,而當高的調變指數時,非線性效應便成為決定系統效能的主要因素,因此必須有效調整OMI來達到高的系統效能值。
Optical code-division multiple-access (OCDMA) offers high statistical multiplexing gain in a bursty traffic environment and is thought to be a more suitable solution in local-area network. Early incoherent optical CDMA systems used pseudo-orthogonal sequences to encode signals in the time domain, but the codes were long and multiple access interference (MAI) limited the number of simultaneous users. Thus, spectral-amplitude-coding (SAC) optical CDMA systems were proposed to eliminate the influence of MAI.

In this dissertation, an optical spectral compensation scheme is proposed to flatten the chips spectra over arrayed-waveguide grating (AWG) router-based code-division multiplexing (CDM) network. Spectral coding chips are attained by slicing the spectrum from a broadband light source (BLS) and then coded with AWG router to form stream of spectral chips. The chips spectra sliced from the contemporary BLS are usually not flat and will induce coding chips with unequal power levels. The resulting unequal chips power will cause MAI at the receiver. Chips spectra compensation is therefore examined with the backward-pumped fiber Raman amplifiers (FRAs). The thesis realizes optical equalizer by adopting genetic algorithm (GA) and linear matrix to flatten the power spectra of SAC-OCDMA chips by identifying the optimal pump wavelengths and pump power of backward-pumped FRAs. Signal-to-interference ratio (SIR) is evaluated with such spectral compensation and performance improvement is found to be in the range of ~20 dB.

For increasing the OCDMA network capacity, this thesis proposes a novel SAC-OCDMA scheme with four optical intensity levels by polarization–division -multiplexing (PDM) to increase the maximum permissible number of simultaneous subscribers using an optical broadband source of finite bandwidth. In the proposed system, each encoder/decoder pair is shared by two subscribers and the requirement for complex polarization compensator schemes at the receiver is removed. The phase-induced intensity noise (PIIN) induced at high optical intensities significantly degrades the performance of a conventional SAC-OCDMA scheme. Therefore, this thesis uses two methods to suppress the PIIN effect, namely (1) two users share the same encoder and transmit signals on mutually orthogonal polarizations such that some PIIN terms are canceled out; and (2) the receiver structure is equipped with multiple balanced detectors (MBDs) in order to reduce the PIIN power impinging on each photodiode (PD). The numerical evaluation results demonstrate that under PIIN limited conditions, the proposed system achieves a higher performance than that of the conventional SAC-OCDMA scheme.

Two different methods are proposed to realize a double-spread CDMA scheme for radio-over-fiber (RoF) transmissions. One method is the network coder/decoders (codecs) are implemented using AWG routers coded with maximal-length sequence (M-sequence) codes. The effects of PIIN and MAI on the system performance are evaluated numerically for different values of the optical modulation index (OMI) during the nonlinear electro-optical modulator (EOM) response. The influence of the degree of polarization (DOP) in the system is also discussed. By employing the scrambler in front of the balanced photo-detector, the system performance can be enhanced.
The second method is optical network codecs are implemented using optical switches (OSWs) coded with bipolar pseudo-noise (PN) codes. The MAI caused by nonlinear optical source on the system performance are evaluated numerically for different values of the OMI. At low OMI optical device noise is dominant, but at high OMI nonlinear effect becomes significant. The high-performance, low-cost characteristics of the double-spread CDMA render the scheme an ideal solution for radio-CDMA wireless system cascaded with optical CDMA network.
Chapter 1 Introduction 1
1.1 From Radio CDMA to Optical CDMA 1
1.2 The Development of Optical CDMA Technology 4
1.2.1 Direct-Optical-Switching (DOS) OCDMA 5
1.2.2 Spectral-Amplitude-Coded (SAC) OCDMA 5
1.3 Introduction of Raman amplifiers 7
1.4 The Concept of Polarization-Division Multiplexing 10
1.5 Applications of CDMA in Radio-over-Fiber Networks 12
1.6 Dissertation Preview 15
Chapter 2 Flattenness Compensation of SAC-OCDMA Chips Spectra 19
2.1 Backward-Pumped FRA 21
2.1.1 Estimation of Raman Gain Coefficient 23
2.1.2 Numerical Method for Propagation Equations 27
2.1.3 Simulation Methods 29
2.1.4 Numerical Methods 30
2.2 Source Non-flatness Compensation by FRAs in Coded-WDM Systems 31
2.2.1 Maximal-Length Sequence (M-Sequence) Codes 32
2.2.2 Arrayed Waveguide Gratings (AWGs) 34
2.2.3 System Description of Source Compensation Scheme 39
2.2.4 Pump-Power-Control Algorithm 45
2.3 Numerical and Performance Analysis of Coded-WDM Compensator 48
2.3.1 Numerical Analysis 48
2.3.2 Performance Analysis 53
2.4 Summary of the Chapter 57
Chapter 3 Phase Noise Suppression in Multilevel Optical CDMA Network 61
3.1 Polarization Properties of Light 62
3.1.1 The Description of Polarization 62
3.1.2 Stoke Parameters and Poincaré Sphere 63
3.2 Multilevel Optical CDMA Network Coding 65
3.2.1 Hadamard Code 66
3.2.2 System Configuration 68
3.2.3 Encoding/decoding Example 73
3.3 System Performance Analysis 75
3.3.1 Interference Limit of SAC-OCDMA Systems 76
3.3.2 Evaluation of Proposed System Performance 80
3.4 Summary of the Chapter 90
Chapter 4 Nonlinearity Effect in Double Spread CDMA RoF Transmissions 91
4.1 Description of Spectra-coding Based Double-spread CDMA System 91
4.1.1 System Configuration of Double-spread CDMA RoF Transmissions 93
4.1.2 Performance Analysis of Double-spread CDMA RoF Transmissions 100
4.1.3 Numerical Result of Double-spread CDMA RoF Transmissions 107
4.2 Description of Time-spreading Based Double-spread CDMA System 115
4.2.1 Mach-Zehnder Interferometer 115
4.2.2 Description of Double-Spread CDMA for RoF System 117
4.2.3 Performance Analysis and Discussion 122
4.3 Summary of the Chapter 130
Chapter 5 Conclusions 133
Appendix A Phase-Induced Intensity Noise 137
References 143
[1] R. L. Pickholtz, D. L. Schilling, and L. B. Milstein, “Theory of spread-spectrum communications - a tutorial,” IEEE Trans. Commun., vol. Com-30, no.5, pp. 855-884, May 1982.
[2] G. R. Cooper, and R. W. Nettleton, "A Spread Spectrum Technique for High-Capacity Mobile Communications", IEEE Trans. Vehicular Tech., Vol. VT-27, no.4, pp. 264-275, Nov. 1978.
[3] D. V. Sarwate, and M. B. Pursley, "Crosscorrelation Properties of Pseudorandom and Related Sequences," Proceedings of the IEEE, vol. 68, no. 5, pp. 593-619, May 1980.
[4] E. H. Dinan, and B. Jabbari, “Spreading Codes for Direct Sequence CDMA and Wideband CDMA Cellular Networks”, IEEE Communication Magazine, pp. 48-54, Sep. 1998.
[5] R. Gold, “Optimal binary sequences for spread spectrum multiplexing,” IEEE Trans. Inform. Theory, vol. IT-13, pp. 619-621, Oct. 1967.
[6] T. Kasami, "Weight Distribution Formula for Some Class of Cyclic Codes," Coordinated Science Lab., Univ. IL, Urbana. Tech. Rep., R-285, Apr. 1966.
[7] TIA/EIA Interim Standard-95, "Mobile Station-Base Station Compatibility Standard for Dual-Mode Wideband Spread Spectrum Cellular System," July 1993.
[8] K. G. Beauchamp. Walsh Functions and their Applications. London: Acadamic Press, 1975.
[9] H. H. Chen, J. F. Yeh, and N. Suehiro, “A multicarrier CDMA architecture based on orthogonal complementary codes for new generations of wideband wireless communications,” IEEE Communications Magazine, vol. 39, no. 10, pp. 126-135, Oct 2001.
[10] C. F. Lam, “To Spread or Not to Spread: The Myths of Optical CDMA,” IEEE LEOS 2000 Annual Mtg., vol. 2, pp. 810–811, Nov. 2000.
[11] J. Salehi, “Code division multiple access techniques in optical fiber net-works. I. Fundamental principles,” IEEE Trans. Commun., vol. 37, no. 8, pp. 834–842, Aug. 1989.
[12] L. Tancevski, and L.A. Rusch, "Impact of the beat noise on the performance of 2-D optical CDMA systems," IEEE Comm. Lett., vol. 4, pp. 264 – 266, Aug. 2000.
[13] A. Stok, and E.H. Sargent,”Lighting the local area: optical code-division multiple access and quality of service provisioning” IEEE Network, vol. 14, no. 6, pp.42 –46, Nov.-Dec. 2000.
[14] Y.G. Wen, Y. Zhang, and L.K. Chen, “On Architecture and Limitation of Optical Multiprotocol Label Switching (MPLS) Networks Using Optical-Orthogonal-Code (OOC)/Wavelength Label,” Opt. Fiber Technol., vol. 8, no. 1, pp. 43-70, Jan. 2002.
[15] J. Y. Hui, “Pattern Code Modulation and Optical Decoding — A Novel Code-Division Multiplexing Technique for Multifiber Network,” IEEE J. Select. Area Commun., vol. SAC-3, no. 6, pp. 916–27, Nov. 1985.
[16] N. Karafolas, and D. Uttamchandani, “Optical Fiber code Division Multiple Access Networks: A Review,” Opt. Fiber Technol., vol. 2, no. 2, pp. 149-168, April 1996.
[17] K. Tsukamoto, T. Higashino, T. Nakanishi, S. Komaki, “Direct optical switching code-division multiple-access system for fiber-optic radio highway networks,” J. Lightwave Technol., vol. 21, no. 12, pp. 3209-3220, Dec. 2003.
[18] S. Park, K. Tsukamoto, and S. Komaki, “Polarity-Reversing Type Photonic Receiving Scheme for Optical CDMA Signal in Radio Highway,” IEICE Trans. Electron., vol. E81-C, no. 3, pp. 462-467, Mar. 1998.
[19] D. Zaccarin, and M. Kavehrad, “An optical CDMA system based on spectral encoding of LED,” IEEE Photon. Technol. Lett., vol. 4, no. 4, pp. 479-482, April 1993.
[20] M. Kavehrad, and D. Zaccarin, “Optical Code-Division-Multiplexed Systems Based on Spectral Encoding of Noncoherent Sources,” IEEE J. Lightwave Technol., vol. 13, no. 3, pp. 534-545, March 1995.
[21] K. O. Hill, and G. Meltz, “Fiber Bragg Grating Technology Fundamentals and Overview,” IEEE J. Lightwave Technol., vol. 15, no. 8, pp. 1263-1276, Aug. 1997.
[22] H. Takahashi, K. Oda, H. Toda, and Y. Inoue, “Transmission characteristics of arrayed waveguide N×N wavelength multiplexer,” IEEE J. Lightwave Technol., vol. 13, pp. 447-455, March 1995.
[23] S. F. Su, R. Olshansky, G. Joyce, D.A. Smith, and J.E. Baran, “Gain Equalization in Multiwavelength Lightwave Systems Using Acoustooptic Tunable Filters,” IEEE Photon. Technol. Lett., vol. 4, pp. 269-271, Mar. 1992.
[24] P. M. J. Schiffer, C. R. Doerr, L. W. Stulz, M. A. Cappuzzo, E. J. Laskowski, A. Paunescu, and L. T. Gomez, “Smart Dynamic Wavelength Equalizer with On-Chip Spectrum Analyzer,” IEEE Photon. Technol. Lett., vol. 12, pp. 1019-1021, Aug. 2000.
[25] J. F. Huang, C. M. Tsai, and Y. L. Lo, “Compensating Fiber Gratings for Source Flatness to Reduce Multiple-Access Interferences in Optical CDMA Network Coder/Decoders,” IEEE J. Lightwave Technol., vol. 22, pp. 739-745, Mar. 2004.
[26] R. H. Stolen, and E. P. Ippen, Raman gain in glass optical waveguides. Appl. Phys. Lett., 22:6, 1973.
[27] S. Namiki, and Y. Emori, “Ultrabroad-Band Raman Amplifiers Pumped and Gain-Equalized by Wavelength-Division-Multiplexed High-Power Laser Diodes,” IEEE J. Sel. Topics Quantum Electron., vol. 7, pp. 3-16, Jan. 2001.
[28] H. Kidorf, K. Rottwitt, M. Nissov, M. Ma, and E. Rabarijaona, “Pump Interactions in a 100-nm Bandwidth Raman Amplifier,” IEEE Photon. Technol. Lett., vol.11, pp. 530-532, May. 1999.
[29] V. E. Perlin, and H. G. Winful, “Optimal Design of Flat-Gain Wide-Band Fiber Raman Amplifiers,” IEEE J. Lightwave Technol., vol. 20, pp. 250-254, Feb. 2002.
[30] P. Xiao, Q. Zeng, J. Huang, and J. Liu, “A New Optimal Algorithm for Multipump Sources of Distributed Fiber Raman Amplifier,” IEEE Photon. Technol. Lett., vol. 15, pp. 206-208, Feb. 2003.
[31] S. Cui, J. Liu, and X. Ma, “A Novel Efficient Optimal Design Method for Gain-Flattened Multiwavelength Pumped Fiber Raman Amplifier,” IEEE Photon. Technol. Lett., vol. 16, pp. 2451-2453, Nov. 2004.
[32] J. Park, J. Park, P. Kim, and N. Park, “Gain and Noise Figure Spectrum Control Algorithm for Fiber Raman Amplifiers,” IEEE Photon. Technol. Lett., vol. 18, pp. 1125-1127, May 2006.
[33] K. Sekine, S. Sasaki, and N. Kikuchi, “10 Gbit/s four-channel wavelength- and polarisation-division multiplexing transmission over 340 km with 0.5 nm channel spacing,” IEEE Electron. Lett., vol. 31, pp. 49-50, Jan. 1995.
[34] H. Sotobayashi, W. Chujo, and K. Kitayama, “1.6-b/s/Hz 6.4-Tb/s QPSK-OCDM/ WDM (4 OCDM × 40 WDM × 40 Gb/s) transmission experiment using optical hard thresholding,” IEEE Photon. Technol. Lett., vol. 14, pp. 555-557, Apr. 2002.
[35] C. D. Poole, N. S. Bergano, R. E. Wagner, and H. J. Schulte, “Polarization dispersion and principal states in a 147-km undersea lightwave cable,” IEEE J. Lightwave Technol., vol. 6, pp. 1185-1190, Jul. 1988.
[36] C. D. Poole and R. E. Wagner, “Phenomenological approach to polarisation dispersion in long single-mode fibres,” IEEE Electron. Lett., vol. 22, pp. 1029-1030, Sept. 1986.
[37] M. I. Hayee, M. C. Cardakli, A. B. Sahin, and A. E. Willner, “Doubling of bandwidth utilization using two orthogonal polarizations and power unbalancing in a polarization-division-multiplexing scheme,” IEEE Photon. Technol. Lett., vol. 13, pp. 881-883, Aug. 2001.
[38] J. S. Wu, J. Wu, and H. W. Tsao, “A radio-over-fiber network for microcellular system application,” IEEE Trans. on Vehicular Tech., vol. 47, no. 1, pp. 84-94, Feb. 1998.
[39] H. Al-Raweshidy and S. Komaki, “Radio over fiber technologies for mobile communication networks,” Boston: Artech House, 2002.
[40] S. Kajiya, K. Tsukamoto, and S. Komaki, “Proposal of fiber-optic radio highway networks using CDMA method,” IEICE Trans. Electron., vol. E79-C, no. 1, pp. 111-117, Jan. 1996.
[41] B. K. Kim, S. Park, Y. Yeon, and B. W. Kim, “Radio-over-Fiber System Using Fiber-Grating-Based Optical CDMA with Modified PN Codes,” IEEE Photon. Technol. Lett., vol. 15, no. 10, pp. 1485-1487, Oct. 2003.
[42] J. A. Salehi, “Code division multiple-access techniques in optical fiber networks. I. Fundamental principles,” IEEE Trans. on Commun., vol. 37, no. 8, pp. 824-833, Aug. 1989.
[43] B. D. Ivan, and Bane Vasic, “Combinatorial Constructions of Optical Orthogonal Codes for OCDMA Systems,” IEEE Comm. Letters, vol. 8, no. 6, pp. 391-393, June 2004.
[44] J. F. Huang, and D. Z. Hsu, “Fiber-grating-based optical CDMA spectral coding with nearly orthogonal M-sequence codes,” IEEE Photon. Technol. Lett., vol. 12, no. 9, pp. 1252-1254, Sept. 2000.
[45] C. C. Yang, J. F. Huang, and S.P. Tseng, “Optical CDMA Network Codecs Structured with M-Sequence Codes over Waveguide-Grating Routers,” IEEE Photon. Technol. Lett., vol. 16, pp. 641-643, Feb. 2004.
[46] E. D. J. Smith, R. J. Blaikie, and D. P. Taylor, “Performance enhancement of spectral-amplitude-coding optical CDMA using pulse-position modulation,” IEEE Trans. on Commun., vol. 46, no. 9, pp. 1176-1185, Sept. 1998.
[47] J. F. Huang, Y. T. Chang, C. C. Hsu, “Hybrid WDM and optical CDMA implemented over waveguide-grating-based fiber-to-the-home networks,” Opt. Fiber Technol., vol. 13, no. 3, pp. 215-225, July 2007.
[48] D. L. Schilling, L. B. Milstein, R. L. Pickholtz, M. Kullback, and F. Miller, “Spread spectrum for commercial communications,” IEEE Communications Magazine, vol. 29, no. 4, pp. 66-79, Apr. 1991.
[49] W. Zhang, X. Feng, J. Peng, and X. Liu, “A Simple Algorithm for Gain Spectrum Adjustment of Backward-Pumped Distributed Fiber Raman Amplifiers,” IEEE Photon. Technol. Lett., vol. 16, pp. 69-71, Jan. 2004.
[50] M. K. Smit, “New focusing and dispersive planar component based on an optical phased array,” Electron. Lett., vol. 24, pp. 385-386, 1988.
[51] H. Takahashi, S. Suzuki, K. Katoh, and I. Nishi, “Arrayed-waveguide grating for wavelength division multildemultiplexer with nanometer resolution,” IEEE Electron. Lett., vol. 26, pp. 87-88, 1990.
[52] C. Dragone, “An N x N optical multiplexer using a planar arrangement of two star couplers,” IEEE Photon. Technol. Lett., vol. 3, pp. 812-815, 1991.
[53] C. Dragone, C. A. Edwards, and R. C. Kistler, “Integrated optics N x N multiplexer on silicon,” IEEE Photon. Technol. Lett., vol. 3, pp. 896-899, 1991.
[54] H. Takahashi, and Y. Hibino, “Arrayed-waveguide grating wavelength multiplexers fabricated with flame hydrolysis deposition,” in Dig. 4th Optoelectronics Conf. IEICE, Japan, 1992, Paper 17C1-3.
[55] S. T. Davey, D. L. Williams, B. J. Ainslie, W. J. M. Rothwell, and B. Wakefield, “Optical gain spectrum of GeO2-SiO2 Raman fibre amplifiers,” IEE Proceedings, vol. 136, pp. 301-306, December 1989.
[56] H. Masuda, A. Mori, K. Shikano, and M. Shimizu, “Design and Spectral Characteristics of Gain-Flattened Tellurite-Based Fiber Raman Amplifiers,” IEEE J. Lightwave Technol., vol. 24, pp. 504-515, Jan. 2006.
[57] D. Hollenbeck and C. D. Cantrell, “Multiple-vibrational-mode model for fiber-optic Raman gain spectrum and response function,” J. Opt. Soc. Am. B, vol. 19, pp. 2886-2892, December 2002.
[58] A. G. Revesz and G. E. Walrafen, “Structural interpretations for some Raman lines from vitreous silica,” J. of Non-Cryst. Solids, 54, pp. 323-333, 1983.
[59] M. N. Islam, Raman Amplifiers for Telecommunications 1, Springer, pp. 69, 2004.
[60] X. Liu, H. Zhang, and Y. Guo, “A Novel Method for Raman Amplifier Propagation Equations,” IEEE Photon. Technol. Lett., vol. 15, pp. 392-394, March 2003.
[61] B. Min, W. J. Lee, and N. Park, “Efficient Formulation of Raman Amplifier Propagation Equations with Average Power Analysis,” IEEE Photon. Technol. Lett., vol. 12, pp. 1486-1488, Nov. 2000.
[62] H. Takahashi, K. Oda, and H. Toba, “Impact of Crosstalk in an Arrayed-Waveguide Multiplexer on N×N Optical Interconnection,” IEEE J. Lightwave Technol., vol. 14, no. 6, pp. 1097-1105, June 1996.
[63] H. Uetsuka, “AWG Technologies for Dense WDM Applications,” IEEE J. Sel. Topics in Quantum Electron., vol. 10, pp. 393-402, March/April 2004.
[64] C. D. Babich, and J. F. Young, “Performance Modeling of a Planar Waveguide Based Spectral Encoding System,” IEEE Lasers & Electro-Optics Society Annual Meeting Proceedings, pp. 523-524, 1999.
[65] P. B. Hansen, L. Eskildsen, A. J. Stentz, T. A. Strasser, J. Judkins, J. J. DeMarco, R. Pedrazzani, and D. J. DiGiovanni, “Rayleigh Scattering Limitations in Distributed Raman Pre-Amplifiers,” IEEE Photon. Technol. Lett., vol. 10, pp. 159-161, Jan. 1998.
[66] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs. New York: Springer-Verlag, 1992.
[67] F. Poli, L. Rosa, M. Bottacini, M. Foroni, A. Cucinotta, and S. Selleri, “Multipump Flattened-Gain Raman Amplifiers Based on Photonic-Crystal Fibers,” IEEE Photon. Technol. Lett., vol. 17, pp. 2556-2558, December 2005.
[68] K. Kurokawa, K. Tajima, K. Tsujikawa, and K. Nakajima, “Reducing the Losses in Photonic Crystal Fibres,” ECOC Proceedings, vol. 2, pp. 279-282, 2005.
[69] X. Liu, H. Zhang, and Y. Guo, “A Novel Method for Raman Amplifier Propagation Equations,” IEEE Photon. Technol. Lett., vol. 15, pp. 392-394, Mar. 2003.
[70] Z. Wei, H.M.H. Shalaby, and H. Ghafouri-Shiraz, “Modified quadratic congruence codes for fiber Bragg-grating-based spectral-amplitude- coding optical CDMA systems,” IEEE J. Lightwave Technol., vol. 19, pp. 1274-1281, Sept. 2001.
[71] B. A. Robson, The Theory of Polarization Phenomena. Oxford: Clarendon Press, 1974.
[72] D. S. Kliger, J.W. Lewis, and C.E. Randall, Polarized Light in Optics and spectroscopy. Boston: Academic Press, 1990.
[73] S. Walkin and J. Conradi, “Multilevel signaling for increasing the reach of 10 Gb/s lightwave systems,” IEEE J. Lightwave Technol., vol. 17, pp. 2235-2248, Nov. 1999.
[74] E. D. J. Smith, P. T. Gough, and D. P. Taylor, “Noise limits of optical spectral-encoding CDMA systems,” IEEE Electron. Lett., vol. 31, no. 17, pp. 1469-1470, 1995.
[75] J. W. Goodman, Statistical Optics. New York: Wiley, 1985.
[76] J. S. Lee, “Signal-to-noise ratio of spectrum-sliced incoherent light sources including optical modulation effects,” IEEE J. Lightwave Technol., vol. 14, no. 10, pp. 2197-2201, Oct. 1996.
[77] M. Nazarathy, W.V. Sorin, D.M. Baney, and S.A. Newton, “Spectral analysis of optical mixing measurements,” IEEE J. Lightwave Technol., vol. 7, no. 7, pp. 1083–1096, July 1989.
[78] R. A. Griffin, D. D. Sampson, and D. A. Jackson, “Coherence coding for photonic code-division multiple access networks,” IEEE J. Lightwave Technol., vol. 13, no. 9, pp. 1826-1837, Sept. 1995.
[79] T. Demeechai, “Polarization statistics modeling of beat noise in optical on-off-keying networks,” Optics Communications, vol. 226, pp. 205-210, Oct. 2003.
[80] J. C. Daly, “Fiber optic intermodulation distortion, IEEE Trans. Commun.,” vol. 30, no. 8, pp. 1954-1958, Aug. 1982.
[81] R. E. Patterson, J. Straus, G. Blenman, and T. Witkowicz, “Linearization of Multichannel analog optical transmitters by quasi-feedforward compensation technique,” IEEE Trans. Commun., vol. 27, no. 3, pp. 582-588, Mar. 1979.
[82] W. Huang, and M. Nakagawa, “Nonlinear effect of direct-sequence CDMA in optical transmission, IEICE Trans. Commun.,” vol. E78-B, no. 5, pp. 702-708, May 1995.
[83] F. Khaleghi, and M. Kavehrad, “A subcarrier multiplexed CDM optical local area network, theory and experiment,” IEEE Trans. on Commun., vol. 43, no. 1, pp. 75-87, Jan. 1995.
[84] B. J. Koshy, and P. M. Shankar, “Spread-spectrum techniques for fiber-fed microcellular networks,” IEEE Trans. on Vehicular Technol., vol. 48, no. 3, pp. 847-857, May 1999.
[85] B. Moslehi, “Noise power spectra of optical two-beam interferometers induced by the laser phase noise,” IEEE J. Lightwave Technol., vol. 4, no. 11, pp. 1704-1710, Nov. 1986.
[86] Dale R. Lutz, “A Passive Fiber-Optic Depolarizer,” IEEE Photon. Technol. Lett., vol. 5, no. 4, pp. 463-465, Apr. 1993.
[87] P. R. Prucnal, M. A. Santoro, and T. R. Fan, “Spread spectrum fiber-optic local area network using optical processing,” IEEE J. Lightwave Technol., vol. 4, no. 5, pp. 537-554, May 1986.
[88] C. N. Ironside, M. O'Neill, N. Finlayson, E. M. Wright, W. Banyai, C.T. Seaton, G.I. Stegeman, “Guided wave all-optical logic devices,” IEE Colloquium, Non-Linear Optical Waveguides, pp. 15/1 - 15/4, Jun. 1988
[89] H. Harada, S. Kajiya, K. Tsukamoto, and S. Komaki, “TDM intercell connection fiber-optic bus link for personal radio communication systems,” IEICE Trans. Commun., vol. E78-B, no. 9, pp. 1287-1294, Sep. 1995.
[90] A. Kohlenberg, “Exact interpolation of band-limited functions,” J. Appl. Phys., vol. 12, no. 12, pp. 1432-1436, Dec. 1953.
[91] M. M. Banat, M. Kavehrad, “Reduction of optical beat interference in SCM/WDMA networks using pseudorandom phase modulation,” IEEE J. Lightwave Technol., vol. 12, no. 10, pp. 1863 - 1868, Sep. 1994.
[92] E. Hecht, Optics-3rd ed. Mass: Addison Wesley, 1998.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top