跳到主要內容

臺灣博碩士論文加值系統

(34.236.36.94) 您好!臺灣時間:2021/07/24 22:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許淑君
研究生(外文):Shu-Chun Hsu
論文名稱:以二氧化鉿為氮化鎵閘極介電層之金氧半電容器之研究
論文名稱(外文):The Studies of GaN MOS Capacitors using HfO2 as Gate Dielectrics
指導教授:施權峰施權峰引用關係
指導教授(外文):Chuan-Feng Shih
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:89
中文關鍵詞:氮化鎵高介電
外文關鍵詞:high-kGaN
相關次數:
  • 被引用被引用:3
  • 點閱點閱:134
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主旨在研究以氮化鎵製作金氧半電晶體的可能性。研究中所使用之絕緣層材料為濺鍍的二氧化鉿,閘極金屬為鋁,並以金氧半二極體的結構(Al/HfO2/GaN)來研究其特性。我們利用不同化學溶液清洗氮化鎵表面、調變氧化層退火條件、以及改變氮化鎵基板的掺雜濃度來探討其金氧半二極體的特性。

我們利用電子能譜儀來觀察化學清洗對氮化鎵表面鎵原子及二氧化鉿的氧原子束縛能的影響。從束縛能的位移量,顯示未經清洗的氮化鎵表面存在一層很薄的氧化鎵。而在使用多種化學溶液對氮化鎵的表面進行清洗後,發現以氰氟酸清洗過的表面,鎵元素及氧元素的束縛能最大,其導致的介面能態密度也最小。二氧化鉿薄膜經過退火後,經由X-ray繞射儀分析,發現初鍍的(未退火)以及經過500 oC退火後的二氧化鉿皆為非晶相,而600 oC�{800 oC退火處理則導致單斜晶相的產生。由電壓�{電容及漏電流的分析中,我們發現適當的退火條件可以降低漏電流,但是此退火條件並不能將氧化層內的缺陷密度降到最少,我們將之歸因於退火後所形成的結晶相。在高電場和低電場的漏電流機制,分別符合古典電性的模型。此外,我們也發現平帶電壓與介面缺陷和GaN摻雜的濃度有關。在2�e1018cm-3左右的摻雜濃度,會有最小的平帶電壓與介面缺陷。
This thesis aims at evaluating the possibility to fabricate the GaN-based MOSFET. The sputtered HfO2 was used as an insulating layer and aluminum was used as the gate metal to build the MOS diode, of which the properties were studied. Besides, the surface cleaning of GaN using different chemical solutions, the post-annealing and the concentration dependence of GaN were exploited in order to study the properties of the GaN MOS diode.

The electronic structures of the HfO2/GaN interfaces after different cleaning process were examined by high-resolution x-ray photoemission spectroscopy (HRXPS). The results of binding energies indicated that the as-deposited GaN surface has a thin gallium oxide, which can be removed by using BOE treatment, resulting in a minimized interface density of states between GaN and subsequently deposited HfO2. X-ray diffraction patterns showed that the HfO2 films are amorphous for films without heat-treatment or annealed at 500oC. Moreover, monoclinic films were obtained when performed heat-treatment at 600-800oC. From the capacitance-voltage (C-V) and current-voltage (J-V) analyses, we found that the leakage current can be reduced by proper post-annealing, however, which can not further lead to a least numbers of defects of the oxides studied. The measured leakage current can be fitted well by the classic tunneling theorems. Finally, the flat-band voltage and interface densities showed dependence on doping concentration of GaN. A lowest shift of flat-band voltage and interface density of the HfO2/GaN MOS diodes was found when the doping concentration of GaN is around 2�e1018cm-3.
摘要 I
Abstract II
致謝 III
目錄 IV
表目錄 VII
圖目錄 VIII
第一章 緒論 1
1-1 前言 1
1-2 氮化鎵的特性與應用 1
1-3 高介電氧化層的應用 2
1-4 論文架構及研究方向 2
第二章 理論基礎 5
2-1 二氧化鉿基本特性 5
2-2 二氧化鉿相關文獻回顧 5
2-3 MOS (MIS) 結構理論基礎 9
2-2-1反轉區電容的頻率效應 11
2-2-2 頻散效應(Frequency dispersion effect)及其修正 11
2-4 MIS電容器結構的缺限型態及其影響 12
2-4-1缺陷對平帶電壓造成的影響 13
2-4-2氧化層缺限對電滯曲線方向的影響 14
2-5 漏電流機制探討 14
2-5-1 直接穿隧 (direct tunneling) 15
2-5-2 傅勒�{諾得翰穿隧 (Fowler�{Nordheim tunneling) 16
2-5-3 蕭基發射 (Schottky emission) 16
2-5-4 普爾�{法蘭克發射 (Poole�{Frenkel emission) 17
2-6 電容器的理論計算 18
第三章 實驗方法 35
3-1 氮化鎵MIS結構的製作 35
3-1-1 氮化鎵試片準備 35
3-1-2 氮化鎵表面清洗 35
3-1-3 二氧化鉿濺鍍流程 36
3-1-4 氧化層後退火 36
3-1-5 電極製備及電極後退火 37
3-1-6 歐姆接觸 37
3-1-7 (黃光微影電極製備) 37
3-2 材料與元件特性分析 38
3-2-1 IV及CV特性量測 38
3-2-2 掃描式電子顯微鏡(SEM) 38
3-2-3 X光繞射儀(XRD) 39
3-2-4 X光光電子能譜儀(HRXPS, ESCA) 39
3-2-5 穿透式電子顯微鏡(TEM) 40
第四章 結果與討論 47
4-1 不同表面清洗方式對電性的影響 47
4-1-1 氮化鎵及二氧化鉿薄膜介面處探討 47
4-1-2 MIS電性討論及比較 48
4-1-3 結論 50
4-2 不同退火溫度下對二氧化鉿薄膜及電容器電性影響 50
4-2-1 電極在不同後退火條件下影響 50
4-2-2 二氧化鉿薄膜晶相分析 51
4-2-3 退火對MIS漏電流特性影響之討論 52
4-2-4 MIS漏電流機制探討 52
4-2-5 MIS 電容特性曲線討論 54
4-2-6 結論 55
4-3 針對氮化鎵基板不同掺雜濃度對電性的影響 56
4-3-1 不同掺雜濃度對基板特性的影響 56
4-3-2 MIS電性討論及比較 57
4-3-3 結論 59
第五章 結論及未來規劃 84
5-1 結論 84
5-2 未來規劃 85
參考文獻 86
1.M. E. Levinshtein, S. L. Rumyantsev, M. S. Shur., “Properties of advanced semiconductor materials :GaN, AlN, InN, BN, SiC, SiGe”, Wiley, 2001.
2.M. Levinshtein, S. Rumyantsev, M. Shur., “Handbook series on semiconductor parameters”, World Scientific, 1996.G. D. Wilk, R. M. Wallace, and J. M. Anthony, J. Appl. Phys., vol. 89, 5243 (2001).
3.J-P Locquet, C. Marchiori, M. Sousa, J. Fompeyrine, and J. W. Seo,“High-k dielectrics for the gate stack”, J. Appl. Phys., vol.100, 051610 (2006).
4.D. Shin, R. Arroyave, and Z-K Liu, “Thermodynamic modeling of the Hf-Si-O system”, Computer coupling of phase diagrams and thermochemistry, vol. 0, 1 (2008).
5.A. N. Saxena, and K. L. Mittal,“Optical and dielectric constant of hafnium and its anodic oxide films”, J. Appl. Phys., vol.46, 2788 (1975).
6.M. Balog, M. Schieber, M. Michman, and S. Patai, Thin Solid Films, “Chemical vapor deposition and characterization of HfO2 films from organo-hafnium compounds”, vol.41, 247 (1977).
7.M. Balog, M. Schieber, M. Michman, and S. Patai, “The characteristics of growth of films of zirconium and hafnium oxides by thermal decomposition of zirconium and hafnium ��-diketonate complexes in the presence and absence of oxygen”, J. Electronchem. Soc. ,vol.126, 1204 (1979).
8.L. Kang, B-H Lee, W-J Qi, Y. Jeon, R. Nieh, S. Gopalan, K. Onishi, and J-C Lee, “Electrical characteristics of highly reliable ultrathin hafnium oxide gate dielectric”, IEEE Electron Device Letters, vol.21, 181 (2000).
9.N. A. Chowdhury, R. Garg, and D. Misra, “Charge trapping and interface characteristics of thermally evaporated HfO2”, Appl. Phys. Lett., vol.85, 3289 (2004).
10.B-Y Tsui, and H-W Chang, “Formation of interfacial layer during reactive sputtering of hafium oxide”, J. Appl. Phys., vol.93, 10119 (2003).
11.M. Toledano-Luque, E. S. Andres, A.del Prado, I. Martil, M. L. Lucia, G. Gonzalez-Diaz, F. L. Martinez, W. Bohne, J. Rohrich, and E. Strub, “High-pressure reactively sputtered HfO2:composition, morphology, and optical properties”, J. Appl. Phys., vol.102, 044106 (2007).
12.K. Yamamoto, S. Hayashi, M. Niwa, M. Asai, S. Horii, and H. Miya, Appl. Phys. Lett., “Electrical and physical properties of HfO2 films prepared by remote plasma oxidation of Hf metal”, vol.83, 2229 (2003).
13.S. J. Lee, T. S. Jeon, D. L. Kwong, and R. Clark, J. Appl. Phys., “Hafnium oxide gate stack prepared by in situ rapid thermal chemical vapor deposition process for advance gate dielectrics”, vol.92, 2807 (2002).
14.Y.-S. Lin, R. Puthenkovilakam, and J. P. Chang, “Dielectric property and thermal stability of HfO2 on silicon”, Appl. Phys. Lett., vol.81, 2041 (2002).
15.K. Kukli, J. Aarik, M. Ritala, T. Uustare, T. Sajavaara, J. Lu, J. Sundqvist, A. Aidla, L. Pung, A. Harsta, and M. Leskela, J. Appl. Phys., “Effect of selected atomic layer deposition parameters on the structure and dielectric properties of hafnium oxide films”, vol.96, 5298 (2004).
16.B. H. Lee, L. Kang, R. Nieh, W-J Qi, and J. C. Lee, Appl. Phys. Lett., “Thermal stability and electrical characteristics of ultrathin hafnium oxide gate dielectric reoxidized with rapid thermal annealing”, vol.76, 1926 (2000).
17.C. Y. Kang, H-J Cho, R. Choi, C. S. Kang, Y. H. Kim, S. J. Rhee, C. H. Choi, S. M. Akbar, and J. C.Lee, “Effects of dielectric structure of HfO2 on carrier generation rate in Si substrate and channel mobility”, Appl. Phys. Lett., vol.84, 2148 (2004).
18.A. Deshpande, R. Inman, G. Jursich, and C. G. Takoudis, “Annealing behavior of atomic layer deposited hafnium oxide on silicon;Changes at the interface”, J. Appl. Phys., vol.99, 094102 (2006).
19.A. Delabie, R. L. Puurunen, B. Brijs, M. Caymax, T. Conard, B. Onsia, O. Richard, W. Vandervorst, C. Zhao, M. M. Heyns, M. Meuris, M. M. Viitanen, H. H. Brongersma, M. Ridder, L. V. Goncharova, E. Garfunkel, T. Gustafsson, and W. Tsai, “Atomic layer deposition of hafnium oxide on germanium substrates”, J. Appl. Phys., vol.97, 064104 (2005).
20.M. Perego, G. Seguini, and M. Fanciulli, “Energy band alignment of HfO2 on Ge”, J. Appl. Phys., vol.100, 93718 (2006).
21.T. V. Perevalov, V. A. Gritsenko, S. B. Erenburg, A. M. Badalyan, H. Wong, and C. W. Kim, “Atomic and electronic structure of amorphous and crystalline hafnium oxide:X-ray photoelectron spectroscopy and density functional calculations”, J. Appl. Phys., vol.101, 53704 (2007).
22.Y. C. Chang, H. C. Chiu, Y. J. Lee, M. L. Huang, K. Y. Lee, M. Hong, Y. N. Chiu, J. Kwo, and Y. H. Wang, “Structural and electrical characteristics of atomic layer deposited high k HfO2 on GaN”, Appl. Phys. Lett., vol.90, 232904 (2007).
23.K. J. Yang, and C. Hu, “MOS capacitance measurements for high-leakage thin dielectrics”, IEEE trans. on Elec. Devices, vol.46, 1500 (1999).
24.H-T Lue, C-Y Liu, and T-Y Tseng, “A improves two-frequency method of capacitance measurement for SrTiO3 as high-k gate dielectric”, IEEE Electron Device Letters, vol.23, 553 (2002).
25.Dieter K. Schroder, “Semiconductor Material and Device Characterization”, 2rd Edition, John Wiley and Cons, Inc., 1998.
26.E. F. Nicollian, and J. R. Brews, “MOS Physics and Technology”, New York, Wiley, 2003.
27.C. K. Maiti, S. Maikap, S. Chatterjee, S. K. Nandi, and S. K. Samanta, “Hafnium oxide gate dielectric for strained-Si1-xGex”, Solid-State Electronics, vol.47, 1995 (2003).
28.W. J. Zhu, T-P Ma, and T. Tamagawa, “Current Transport in Metal/Hafnium oxide/Silicon Structure”, IEEE Electron Device Letters, vol.23, 97 (2002).
29.L. W. Tu, W. C. Kuo, K. H. Lee, P. H. Tsao, C. M. Lai, A. K. Chu, and J. K. Sheu, “High-dielectric-constant Ta2O5/n-GaN metal-oxide-semiconductor structure”, Appl. Phys. Lett., vol.77, 3788 (2000).
30.汪建民,“材料分析”,中國材料科學學會。
31.J. Sun, K. A. Rickert, J. M. Redwing, A. B. Ellis, F. J. Himpsel, and T. F. Kuech, “p-GaN surface treatments for metal contacts”, Appl. Phys. Lett., vol.76, 415 (2000).
32.D-S Leem, J-O Song, H-G Hong, J. S. Kwak, Y. Park, and T-Y Seong, “Low resistance and highly reflective Sb-Doped SnO2/Ag ohmic contacts to p-Type GaN for flip-chip LEDs”, Electrochemical and Solid-State Letters, vol.7, G219 (2004).
33.L. F. Voss, L. Stafford, R. Khanna, B. P. Gila, C. R. Abernathy, S. J. Pearton, F. Ren, and I. I. Kravchenko, “Ohmic contacts to p-type GaN based on TaN, TiN, and ZrN”, Appl. Phys. Lett., vol.90, 212107 (2007).
34.V. M. Bermudez, “Study of oxygen chemisorption on the GaN(0001)-(1�e1) surface”, J. Appl. Phys., vol.80, 151190 (1996).
35.F. Machuca, Z. Liu, Y. Sun, P. Pianetta, W. E. Spicer, and R. F. W. Pease, “Simple method for cleaning gallium nitride (0001)”, J. Vac. Sci. Technol., vol.A205, 1784 (2002).
36.John F. Moulder et al.,“Handbook of x-ray photoelectron spectroscopy”, Eden Prairie, Minn., 1995.
37.D. A. Neamen., “Semiconductor physics and devices :basic principles”, Irwin, 1992.
38.K. Köhler, J Wiegert, H. P. Menner, M. Maier, and L. Kirste, “The surface potential of GaN:Si”, J. Appl. Phys., vol. 103, 023706 (2008).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top