跳到主要內容

臺灣博碩士論文加值系統

(3.229.137.68) 您好!臺灣時間:2021/07/25 18:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉叡明
研究生(外文):Jui- Ming Liu
論文名稱:伺服馬達低轉速控制改善之研究
論文名稱(外文):Study on Performance Improvement of Low Velocity Control of Servomotors
指導教授:鄭銘揚鄭銘揚引用關係
指導教授(外文):Ming- Yang Cheng
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:113
中文關鍵詞:摩擦力補償摩擦力模型干擾量估測速度觀測器速度估測干擾量觀測器
外文關鍵詞:velocity observerfriction compensationdisturbance estimationfriction modeldisturbance observervelocity estimation
相關次數:
  • 被引用被引用:10
  • 點閱點閱:774
  • 評分評分:
  • 下載下載:165
  • 收藏至我的研究室書目清單書目收藏:0
一般而言,回授控制在伺服控制系統中扮演了舉足輕重的角色。因此能夠抑制雜訊干擾的回授訊號源,不但可以提升控制系統的性能,更可以降低控制器設計的複雜度。在伺服馬達的轉速控制方面,中高轉速控制皆已相對成熟,而低轉速控制主要會遭遇到的困難在於編碼器所產生的離散位置資訊少,造成速度回授雜訊較大;以及摩擦力對系統所產生的干擾及誤差。有鑒於此,本論文的主要目的在於使用解析度較高的速度觀測器估測法則,搭配論文中所提出的改良型干擾量觀測器補償架構,以解決伺服馬達在低速運轉時觀測器所遭遇的估速與摩擦力干擾問題;另外透過AC伺服馬達搭載一負載進行實驗,分析比較各種摩擦力補償架構間的性能差異,以驗證改良型的干擾量觀測器補償架構確實能提供較好的抑制摩擦力效果。其中,有別於一般使用所費不貲的頻譜分析儀進行系統鑑別,本論文所使用的系統參數估測策略,能夠更簡單且有效的決定系統參數。
Generally speaking, feedback control plays an important role in servo control systems. Therefore, a high-accuracy feedback signal can not only improve the system performance, but also reduce the controller design complexity. When it comes to velocity control of servomotors, high-velocity and medium-velocity control techniques have relatively matured. However, low-velocity control encounters two main difficulties. These difficulties are frictional disturbances within the servomotors and the noise in velocity feedback caused by the lack of discrete-time position information. Hence, the aim of this thesis is to use a velocity observer with higher velocity feedback resolution and a modified disturbance observer compensation structure to deal with the problems that the observer-based method will face under low speed operation. In the experiment, five different friction compensation structures are used to control an AC servomotor to drive a disk mass, respectively. Experimental results indicate that the modified disturbance observer compensation structure provides the best performance. In addition, when identifying a system model, we used a simple model identification strategy which identifies the system more easily and efficiently than the more commonly used and more expensive approach of using a spectrum analyzer.
目錄
中文摘要…………………………………………………………………I
英文摘要…………………………………………………………………II
誌謝………………………………………………………………………III
目錄………………………………………………………………………IV
表目錄……………………………………………………………………VII
圖目錄……………………………………………………………………IX

第一章 緒論…………………………………………………………………1
1.1 簡介……………………………………………………………………1
1.2 研究動機與目的………………………………………………………1
1.3 文獻回顧………………………………………………………………2
1.4 論文架構………………………………………………………………3
第二章 伺服控制系統架構…………………………………………………4
2.1 簡介……………………………………………………………………4
2.2 交流伺服馬達工作原理………………………………………………4
2.3 伺服馬達系統模型介紹………………………………………………5
2.4 伺服控制迴路架構介紹………………………………………………9
2.4.1 電流迴路……………………………………………………………10
2.4.2 速度迴路……………………………………………………………11
2.4.3 位置迴路……………………………………………………………12
第三章 速度估測法則………………………………………………………13
3.1 簡介……………………………………………………………………13
3.2 數值轉速估測法………………………………………………………13
3.2.1 差分估測法…………………………………………………………14
3.2.2 最小平方估測法……………………………………………………14
3.2.3 改良式最小平方估測法……………………………………………16
3.3 速度觀測器……………………………………………………………18
3.3.1 馬達系統狀態空間表示法…………………………………………18
3.3.2 傳統速度觀測器……………………………………………………20
3.3.3 觀測器參數設計……………………………………………………21
3.3.4 基於位置量補償之速度觀測器……………………………………23
3.3.5模糊邏輯速度觀測器………………………………………………25
3.4 速度估測法則分析……………………………………………………28
3.4.1 數值轉速估測法……………………………………………………29
3.4.2 速度觀測器估測法…………………………………………………31
第四章 干擾量的估測與補償………………………………………………35
4.1 簡介……………………………………………………………………35
4.2 干擾量觀測器…………………………………………………………35
4.2.1 開迴路干擾量觀測器………………………………………………36
4.2.2 閉迴路干擾量觀測器………………………………………………38
4.2.3 干擾量觀測器分析…………………………………………………40
4.3 摩擦力及系統模型……………………………………………………42
4.3.1 摩擦力數學模型……………………………………………………42
4.3.2 滯滑(stick-slip)現象…………………………………………………46
4.3.3 Lorenz系統參數及估測……………………………………………49
4.3.4 摩擦力模型建立……………………………………………………53
4.4干擾量補償架構………………………………………………………55
第五章 實驗設備及結果……………………………………………………56
5.1 實驗系統架構…………………………………………………………56
5.1.1 硬體設備……………………………………………………………57
5.1.2 軟體設備……………………………………………………………59
5.2 實驗ㄧ:系統參數估測與驗證………………………………………60
5.2.1 系統參數估測………………………………………………………61
5.2.2 估測結果驗證………………………………………………………65
5.3 實驗二:速度估測及控制……………………………………………67
5.3.1 中轉速實驗量測……………………………………………………68
5.3.2 低轉速實驗量測……………………………………………………71
5.3.3 極低轉速實驗量測…………………………………………………74
5.3.4未補償干擾量之速度估測…………………………………………78
5.4 實驗三:干擾量觀測器補償架構……………………………………80
5.4.1 極低速下之干擾量估測……………………………………………81
5.4.2 改良型干擾量觀測器補償架構……………………………………82
5.5 實驗四:干擾量補償架構實驗結果比較……………………………85
5.5.1位置補償速度觀測器之定速控制實驗……………………………87
5.5.2高解析度編碼器之定速控制實驗…………………………………104
5.5.3模糊速度觀測器之定速控制實驗…………………………………106
第六章 結論與建議…………………………………………………………108
參考文獻……………………………………………………………………109
自述…………………………………………………………………………113
參考文獻
[1]R. H. Brown, S. C. Schneider, and M. G. Mulligan, “Analysis of algorithms for velocity estimation from discrete position versus time data, ” IEEE Transactions on Industrial Electronics, vol. 39, pp. 11-19, 1992.
[2]R. D. Lorenz and K. W. Van Patten, “High-resolution velocity estimation for all-digital, AC servo drives, ” IEEE Transactions on Industry Applications, vol. 27, pp. 701-705, 1991.
[3]R. D. Lorenz, T. A. Lipo, and D. W. Novotny, “Motion control with induction motors, ” Proceedings of the IEEE, vol. 82, pp. 1215-1240, 1994.
[4]S. Sakai and Y. Hori, “Ultra-low speed control of servomotor using low resolution rotary encoder, ” in Proceedings of the 1995 IEEE IECON 21st International Conference on Industrial Electronics, Control, and Instrumentation, vol. 1, pp. 615-620, 1995.
[5]S. M. Yang and S. J. Ke, “Performance evaluation of a velocity observer for accurate velocity estimation of servo motor drives,” IEEE Transactions on Industry Applications, vol. 36, pp. 98-104, 2000.
[6]F. C. Lin and S. M. Yang, “Adaptive fuzzy logic-based velocity observer for servo motor drives, ” Mechatronics, vol. 13, pp. 229-241, 2003.
[7]L. Kovudhikulrungsri and T. Koseki, “Precise Speed Estimation From a Low-Resolution Encoder by Dual-Sampling-Rate Observer, ” IEEE/ASME Transactions on Mechatronics, vol. 11, pp. 661-670, 2006.
[8]郭奕玲,沈慧君, 物理學演義, 凡異出版社, 1996。
[9]D. Karnopp, “Computer simulation of slip-stick friction in mechanical dynamic systems, “ASME Journal of Dynamic Systems, Measurement, and Control, ” vol. 107, pp. 100-103, 1985.
[10]B. Armstrong, “Friction: Experimental, Modeling and Compensation,” in Proceedings of the 1988 IEEE International Conference on Robotics and Automation, pp.1422-1427, 1988.
[11]C. Canudas de Wit and V. Seront, “Robust Adaptive Friction Compensation,” in Proceedings of the 1990 IEEE International Conference on Robotics and Automation, vol. 2, pp. 1383-1388, 1990.
[12]C. Canudas de Wit, P. Moel, A. Aubin, B. Broglato and P. Drevet, “Adaptive Friction Compensation in Robot Manipulators: Low-velocities,” in Proceedings of the 1989 IEEE International Conference on Robotics and Automation, pp. 1352-1357, 1989.
[13]D. Haessig and B. Friedland, “On the Modeling and Simulation of Friction,” ASME Journal of Dynamic System, Measurement, and Control, vol. 113, no.3, pp. 354-362, 1991.
[14]C. Canudas de Wit, H. Olsson, K. J. �珺tr�卌 and P. Lischinsky, “A new Model for Control of Systems with Friction,” IEEE Transactions on Automatic Control, vol.40, no. 3, pp. 419-425, 1995.
[15]H. S. Lee and M. Tomizuka, “Robust motion controller design for high-accuracy positioning systems,” IEEE Transactions on Industrial Electronics, vol. 43, pp. 48-55, 1996.
[16]T. Umeno and Y. Hori, “Robust speed control of DC servomotors using modern two degrees-of-freedom controller design,” IEEE Transactions on Industrial Electronics, vol. 38, pp. 363-368, 1991.
[17]S. Endo, H. Kobayashi, C. J. Kempf, S. Kobayashi, M. Tomizuka, and Y. Hori, “Robust digital tracking controller design for high-speed positioning systems,” Control Engineering Practice, vol. 4, pp. 527-536, 1996.
[18]E. C. Tseng, M. Y. Cheng, and M. C. Tsai, “Design of a PI-type torque observer for detecting abnormal load,” in Proceedings of the 1998 International Conference on Mechatronics Technology, pp. 147-152, 1998.
[19]M. C. Tsai, E. C. Tseng, and M. Y. Cheng, “Design of a torque observer for detecting abnormal load,” Control Engineering Practice, vol. 8, pp. 259-269, 2000.
[20]唐佩忠, CNC伺服參數調整專家系統, 第二期, 1993。
[21]F. Ltd, Fanuc AC Servomotor alpha series, Parameter Manual, 1994.
[22] 孫宗瀛,楊英魁, Fuzzy控制:理論,實作與應用, 全華科技圖書, 2005。
[23] 李祖聖, Lecture Notes on Fuzzy Logic Control, 2002。
[24]A. V. Oppenheim, R. W. Schafer, and J. R. Buck, Discrete-Time Signal Processing, Prentice Hall, 1999.
[25]楊家輝, Lecture Notes on Digital Signal Processing, 2003。
[26]廖兼賢, 以離散位置資訊作速度與加速度估測之研究, 碩士論文,國立成功大學電機工程學系, 2004。
[27]C. de Wit, “A new model for control of systems with friction,” IEEE Transactions on Automatic Control, vol. 40, pp. 419-425, 1995.
[28]林銘湧, 精密伺服控制系統之摩擦力分析及補償研究, 碩士論文,逢甲大學自動控制工程學系, 2002。
[29]C. T. Johnson and R. D. Lorenz, “Experimental identification of friction and its compensation in precise, position controlled mechanisms,” IEEE Transactions on Industry Applications, vol. 28, pp. 1392-1398, 1992.
[30]邱奕範, 命令及摩擦力前饋控制於工具機之研究, 碩士論文,國立成功大學機械工程學系, 2002。
[31]工研院, PMC32 韌體開發技術手冊 Ver2.0, 2002。
[32]工研院, EPCIO-601-1 使用手冊, 2002。
[33]Panasonic, AC伺服馬達驅動器 MINAS-A 系列操作說明書。
[34]T. Instruments, TMS320 Float-Point DSP Optimizing C Compiler, 1991.
[35]T. Instruments, TMS320C3x C Source Debugger User's Guide, 1991.
[36]T. Instruments, TMS320C3x User's Guide, 1992.
[37]張智星, MATLAB程式設計與應用, 2002。
[38]惠汝生, 自動量測系統-LabView, 全華科技圖書, 2002。
[39]謝勝治, 圖控式程式語言-LabView, 全華科技圖書, 2002。
[40]F. Ltd, Fanuc AC Servo Unit Maintenance Manual, 1987.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊