跳到主要內容

臺灣博碩士論文加值系統

(3.95.131.146) 您好!臺灣時間:2021/07/26 04:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:尤宗旗
研究生(外文):Tzong-Chee Yo
論文名稱:應用具諧波抑制與圓極化平面整流天線之無線傳能充電系統設計
論文名稱(外文):The Wireless PoweringCharging System with Harmonic Rejection and Circular Polarization Rectenna
指導教授:羅錦興羅錦興引用關係
指導教授(外文):Ching-Hsing Luo
學位類別:博士
校院名稱:國立成功大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:93
中文關鍵詞:圓極化無線傳能無線充電整流天線諧波抑制圓形微帶天線
外文關鍵詞:wireless chargingrectennaharmonic rejectioncircular microstrip disk antennawireless power transmission (WPT)circular polarization (CP)
相關次數:
  • 被引用被引用:10
  • 點閱點閱:751
  • 評分評分:
  • 下載下載:254
  • 收藏至我的研究室書目清單書目收藏:1
在本文中,為解決無線感測器在長期使用時電力來源的問題,提出射頻無線充電方式為其解決方案,可於電力耗盡時從讀取器予以補充,以免除更換電池之需要。該充電電路乃針對目前普遍之可攜式裝置所搭配之鋰離子可充電電池,在符合FCC規範之有限射頻能量條件內,以不經過電壓調整器為原則下進行直接充電。同時,完成了將輸入電壓提升以達充電之可行性並依據輸出電流對輸入阻抗分析以達充電效能之最佳化,並成功將其應用於鋰離子電池之無線充電應用上。同時,為簡化整流天線之設計流程,亦在文中提出具有圓極化與諧波抑制特性之天線,該類天線特別適合於無線傳能用途之整流天線(rectenna)以及與功率放大器結合之主動整合式天線(AIA)等整合非線性電路之天線系統,可省略諧波抑制濾波器之使用。首先為一圓極化且具二次諧波抑制功能之圓形微帶天線之實現,接著將其應用於2.45GHz ISM Band頻段之整流天線設計,該整流天線之整流效率根據所接收之功率密度之不同,最佳效率為78% (16.5mW/cm2),而在ANSI/IEEE的標準下,於一般大眾與專業從業人員所允許之功率密度限制(1.63mW/cm2與8.16mW/cm2)下可達53%與75%之效率。應用所提出之電路充電效率提升方法與所提出之圓極化與諧波抑制天線之整合,在需要長時間使用與不利於人員進出與施工之環境條件下,將可為無線感測器或主動式射頻標籤,提供更具有彈性、更廣泛及更方便的應用。
另一方面,402-405MHz之可對鋰離子電池充電之整流天線亦被提出於生醫植入式頻段,使用本實驗室所發展之堆疊式可植入式天線做為功率接收介面,可成功將所接收到之電磁能量轉換為直電流並對鋰離子電池做充電;而在充電效率上,使用整流天線直接對電池充電,省去電源處理電路不必要之功率消耗,該整流天線之射頻轉直流之最佳效率可達76.2%,而且能在電池儲能電位3.7-4.2V平均達到75%之效率,將可應用於體表下之植入式生醫感測通訊裝置,於與外界通訊同時進行電源之補充。
In this dissertation, a RF power charging methodology is developed to provide ultimate power supply of wireless sensors in long term operation with rechargeable battery. Based on the FCC (Federal Communication Commission) regulation of the limited permissible exposure radiation density for public, the battery recharging procedure is accomplished by directly connecting to the rectenna without an additional voltage regulator. To achieve this, the input voltage promoting techniques are adopted by combining voltage transformation and voltage booster to overcome the high potential barrier of 4.2V Li-ion battery; also, the input impedance of rectifier while loading the battery is analyzed according to the output DC current for efficiency optimization. After that, to simplify the design procedure of the rectenna, the development of the circular polarization and harmonic rejection circular microstrip antenna is presented here. Such kind of the antenna is especially suitable for the rectifying antenna (rectenna) and active integrated antenna (AIA) to eliminate harmonic suppression filter. Hence, a novel rectenna using the compact circularly polarized (CP) patch antenna with RF-to-DC power conversion part at 2.45 GHz is introduced, in which the unbalanced slots structure is adopted for size reduction and 2nd harmonic rejection. To contribute a rectenna for RF power conversion, the back side of the CP antenna is the doubler rectifier circuit with 3rd order harmonic rejection radial stub for efficiency optimization and harmonic power re-radiation elimination. The adopted CP antenna built on low cost FR-4 substrate has measured 3.1dBic CP gain, bandwidth of 137 MHz (10 dB return loss) and 30 MHz CP bandwidth (3 dB axial ratio). By up to 3rd order harmonic rejection, the RF-to-DC conversion efficiency would reach 53% and 75% with 1 KΩ resistor load under ANSI/IEEE uncontrolled and controlled RF human exposure limit, respectively.
In addition, the implantable rectenna (rectifying antenna) used for wireless charging lithium-ion (Li-ion) battery in biomedical implants is proposed in MICS band (402-405MHz) with power reception interface of developed implantable antenna. By the proposed methodology for input impedance based on output DC current, the potential barrier of Li-ion battery is successfully overcome for recharging. Ignoring regulators of the rectified DC voltage, the DC power can supply large enough DC voltage (>4.2V) for charging lithium-ion battery with optimized RF-to-DC conversion efficiency (76.2%) and the average efficiency of 75% from 3.7 to 4.2V. Hence, the bio-implant can prolong its operation life by wireless charging as communicating with external reader by the proposed implantable rectenna.
摘要 I
ABSTRACT III
誌謝 V
TABLE OF CONTENTS VI
TABLE CAPTION VIII
FIGURE CAPTION IX
CHAPTER 1 INTRODUCTION 1
1.1 General introduction 2
1.2 Historical Review of WPT and SBSP 4
1.3 Brief Review of Recent Wireless Energy Transmission (WiTricity) Development 17
1.4 Motivation 22
1.5 Wireless powering/charging system overview 24
1.6 Outline of thesis 25
CHAPTER 2 DESIGN OF RF-TO-DC RECTIFIER FOR RECTENNA 27
2.1 Brief review of RF rectifier 27
2.2 RF and DC model of Schottky barrier diode 27
2.3 Operation principle of rectifier in rectenna 30
2.3.1 Voltage gain impedance transformer 34
CHAPTER 3 MICROSTRIP ANTENNA DESIGN FOR RECTENNA AND ACTIVE INTEGRATED ANTENNA WITH CIRCULAR POLARIZATION AND HARMONIC REJECTION 37
3.1 The trend of antenna design for rectenna and AIA 37
3.2 Basic principle of circular polarization and harmonic rejection antenna 39
3.2.1 Circular polarization concept and measurement 39
3.2.2 Harmonic rejection 45
3.2.3 Circular microstrip disk antenna 53
3.3 Circular polarized and 2nd harmonic rejection microstrip antenna with unbalanced circular slots 58
CHAPTER 4 RECTENNA DESIGN IN 2.45GHZ ISM BAND AND MICS BAND 65
4.1 Compact Circularly Polarized Rectenna at 2.45GHz ISM Band 65
4.1.1 Radiation of Antenna 66
4.1.2 Rectifier Design 66
4.1.3 Results of the rectenna 68
4.1.4 Summary of ISM band rectenna 70
4.2 Rectifier Design for Wireless Charging on Lithium-ion Battery 71
4.2.1 Wireless charging system overview 72
4.2.2 Input impedance characterization by resistor and battery load 73
4.2.3 Rectenna Design 76
4.2.4 Charging Efficiency Measurement Apparatus 77
4.2.5 Results and Discussion 78
4.2.6 Summary of MICS Band Rectenna 80
CHAPTER 5 CONCLUSION 81
PUBLICATION LIST 91
VITA 93
[1]Khan M. Z. Shams and Mohammod Ali, “Wireless power transmission to a buried sensor in concrete,” IEEE Sensors Journal, vol.7, no. 12, pp.1573-1577, Dec. 2007
[2]C. Suer, M. Stanacevic, G. Cauwenberghs, and N. Thakor, “Power harvesting and telemetry in CMOS for implanted devices,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 52, no. 12, pp. 2605-2613, Dec. 2005
[3]Berndie Strassner and Kai Chang, “Passive 5.8-GHz radio-frequency identification tag for monitoring oil drill pipe.” IEEE Transaction on Microwave Theory and Techniques, vol. 51, no. 2, pp. 356-363, Feb. 2003
[4]Michael suster, Darrin J. Young and Wen H. Ko, “Micro-power wireless transmitter for high-temperature MEMS sensing and communication applications,” The 15th International Conference on Micro Electro Mechanical Systems, pp. 641-644, 20-24 Jan. 2002
[5]D.M. Spillman and E.S. Takeuchi, “Lithium ion batteries for medical devices,” Battery Conf. on Applicat. and Advanc., Jan. 1999, pp. 203-208
[6]Udo Karthaus and Martin Fischer, “Fully integrated passive UHF RFID transponder IC with 16.7-μW minimum RF input power,” IEEE Journal of Solid-State Circuits, vol. 38, no. 10, pp. 1602-1608, Oct. 2003
[7]Fatih Kocer and Michael P. Flynn, “A new transponder architecture with on-chip ADC for long range telemetry application,” IEEE Journal of Solid-State Circuits, vol. 41, no. 5, pp.1142-1148, May 2006
[8]Amin Shameli, Aminghasem Safarian, Ahmadreza Rofougaran and Maryam Rofougaran and France De Flaviis, “Power harvester design for passive UHF RFID tag using a voltage boosting technique,” IEEE Transactions on Microwave Theory and Techinques, vol. 55, no. 6, pp. 1089-1097, Jun. 2007
[9]Yat-Hei Lam, Wing-Hung Ki, Chi-Ying Tsui, “Integrated low-loss CMOS active rectifier for wireless powered devices,” IEEE Transactions on Circuits and Systems-II: Express Brief, vol. 53, no.12, pp.1378-1382, Dec. 2006
[10]Aristeidis Karalis, Robert Moffatt, J.D.Joannopoulos, Peter Fisher, and Marin Soljacic, “Wireless Power Transfer via Strongly Coupled Magnetic Resonances,” Science, Vol.317, p.83-86, July 2007
[11]Aristeidis Karalis, John D.Joannopoulos, and Marin Soljacic, “Efficient wireless non-radiative mid-range energy transfer,” Annals of Physics Vol.323, pp.34-47, April 2008
[12]Ryan Y. Miyamoto and Tatsuo Itoh, “Retrodirective arrays for wireless communications” IEEE Microwave Magazine, vol. 3, no. 1, pp. 71-79, March 2002
[13]W. C. Brown, J. R. Mims, N. I. Heenan, “An experimental microwave-powered helicopter,” IRE International convention record, vol. 13, part 5, pp. 225-235, March 1965
[14]IEEE C95.1-2005, IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields_ 3 kHz to 300 GHz
[15]W Welsbeck and D. J. Clchon, “The link from Heinrich Hertz to modern communication,” 25th European Microwave Conference, vol. 2, pp. 886-894, 1995
[16]A. S. Marincic, “Nikola Tesla and the wireless transmission of energy,” IEEE Transaction on Power Apparatus and Systems, vol. PAS-101, no. 10, pp. 4064-4068, 1982
[17]Originated from Wikimedia and the Tesla Wardenclyffe Project claimed copyright. Available from: http://commons.wikimedia.org/wiki/Image:Tesla_colorado.jpg
[18]J. E. Degenford, M. D. Sirkes and W. H. Steier, “The reflecting beam waveguide,” IEEE Transactions on Microwave Theory and Techniques, vol. 12, no. 4, pp. 445-453, Jul. 1964
[19]W. C. Brown, J. F. Skowron; G. H. MacMaster;and J. W. Buckley, “The super power CW amplitron,” International Electron Devices Meeting, vol. 9, pp.52, 1963
[20]W. C. Brown, “Experiments in the transportation of energy by microwave beam,” IRE Internation Convention Record, vol.12, part2, pp. 8-17, March 1964
[21]W. C. Brown et al., U.S. Patent 3434678, March 25, 1969
[22]W. C. Brown, “The technology and application of free-space power transmission by microwave beam,” Proceeding of IEEE, vol. 62, no. 1, pp. 11-25, 1974
[23]W. C. Brown, C. K. Kim, “Recent Progress in Power Reception Efficiency in a Free-Space Microwave Power Transmission System,” International Microwave Symposium, vol. 74, no.1, pp. 332-333, Jun. 1974
[24]W. C. Brown, “The history of power transmission by Radio waves,” IEEE Transaction on Microwave theory and Techniques, vol. MTT-32, no. 9, pp. 1230-1242, Sept. 1984
[25]W. C. Brown and J. F.Triner, “Experimental Thin-Film, Etched-Circuit Rectenna,” MTT-S International Microwave Symposium, vol.82, no.1, pp. 185-187, June 1982
[26]G. R. Woodcock, “Solar power satellite system definition study, Phase II final report, volume, II, “Boeing Aerospace Co., Seattle, WA. Rep. D180-25461-2, 1979
[27]C. Mankins, “Space solar power: A fresh look” (paper AIAA 95-3653), presented at the 1995 AIAA Space Program and Technologies Conference, Huntsville, AL, 1995
[28]International Union of Radio Science (URSI) White Paper on Solar Power Satellite (SPS) Systems, appendices, pp. C-6, 2007
[29]J. C. Mankins and J. Howell, “Overview of the space solar power exploratory research and technology program,” presented at the 35th Intersociety Energy Conversion Eng. Conf., Las Vegas, NV, 2000, Paper AIAA 2000-3060
[30]J. O. McSpadden and J. C. Mankins, “Summary of recent results from NASA’s Space Solar Power (SSP) Program and the current capabilities of microwave WPT technology , IEEE Microwave Magazine, vol. 3, no. 4, pp. 46-57, December 2002
[31]National Research Council, Laying the Foundation for Space solar Power—An Assessment of NASA’s Space Solar Power Investment Strategy. Washington, DC.: National Academy Press, 2001
[32]Ad Astra, the magazine of the National Space Society, special report, “Space-based solar power, inexhaustible Energy From Orbit, Spring 2008
[33]Phase 0 Architecture Feasibility Study, Report to the National Security Space Office, “Space-Based Solar Power As an Opportunity for Strategic Security,” October 10, 2007
[34]Space Solar Power Library by National Space Society. [Online]. Available: http://www.nss.org/settlement/ssp/library/index.htm
[35]Dipak L. Sengupta and Tapan K. Sarkar, “Maxwell, Hertz, the Maxwellians, and the early history of electromagnetic waves,” IEEE Antennas and Propagation Magazine, vol. 45, no. 2, pp. 12-19, April 2003
[36]O. M. Bucci, G. Pelosi, and S. Selleri, “The work of Marconi in Microwave Communications,” IEEE Antennas and Propagation Magazine, vol. 45, no. 5, pp. 46-53, Oct. 2003
[37]A. Marincic, D. Budimir, “Telsa’s contribution to radiowave propagation,” International conference on Telecommunications in Modern Satellite, Cable and Broadcasting Service, vol. 1, pp. 327-331, Sept. 2001
[38]H. A. H. Boot and J. T. Randall, “Historical notes on the cavity magnetron,” IEEE Trans. Electron Devices, vol. ED-23, pp. 724-729, July, 1976
[39]G. Sato, “A secret story about the Yagi antenna,” IEEE Antennas and Propagation Magazine, vol. 33, no. 3, pp. 7-18, June 1991
[40]J. Wood, “Beating the transistor-developments in UHF technology”, vol. 38, no. 3, pp. 107-110, March 1992
[41]Peter Scholz, Christian Reinhold, Werner John and Ulrich Hilleringmann, “Analysis of energy transmission for inductive coupled RFID tags,” IEEE International Conference on RFID, pp. 183-190, March 2007
[42]Shuenn-Yuh Lee, and Shyang Lee, “An implantable wireless bidirectional communication microstimulator for neuromuscular stimulation,” IEEE Transaction Circuits System I, vol. 52, no. 12, pp. 2526-2538, Dec 2005
[43]P. Si, A. P. Hu, S. Malpas, D. Budgett, “A Frequency Control Method for Regulating Wireless Power to Implantable Devices,” IEEE Transaction on Biomedical Circuits and System, vol.2, no. 1, March 2008
[44]Andre Kurs, Aristeidis Karalis, Robert Moffatt, J.D.Joannopoulos, Peter Fisher, and Marin Soljacic, “Wireless Power Transfer via Strongly Coupled Magnetic Resonances,” Vol.317, p.83-86, Science
[45]Supporting online material of Wireless Power Transfer via Strongly Coupled Magnetic Resonances, Science online, Available: http://www.sciencemag.org
[46]Aristeidis Karalis, John D. Joannopoulos, and Marin Soljacic, “Efficient wireless non-radiative mid-range energy transfer,” Annals of Physics, Vol.323, p.34-48, 2008
[47]Powercast Corp., [online], Available: http://powercastco.com/, 2008
[48]eCoupled, Fulton Innovation , LLC., [online], Available: http://www.ecoupled.com/index.html, 2008
[49]Vesna Radisic, Yongxi Qian and Tatsuo Itoh, “Novel architectures for high-efficiency amplifier for wireless applications,” IEEE Transactions on Microwave Theory and Techniques, vol. 46, no. 11, pp. 1901-1909, Nov. 1998
[50]Amin Shameli, Aminghasem Safarian, Ahmadreza Rofougaran, Maryam Rofougaran and Franco De Flaviis, “Power harvester design for passive UF RFID tag using a voltage boosting technique,” IEEE Transactions on Microwave Theory and Techniques, vol. 55, no. 6, pp. 1089-1097, June 2007
[51]Uod Karthaus and Martin fischer, “Fully integrated passive UHF RFID transponder IC with 16.7-uW minimum RF input power,” IEEE Journal of Solid-State circuits, vol.38, no. 10, pp. 1602-1608, Oct. 2003
[52]James O. McSpadden, Taewhan Yoo and Kai Chang, “Theoretical and Experimental Investigation of a rectenna element for microwave power transmission,” IEEE Transaction on Microwave Theory and Techniques, vol. 40, no. 12, pp. 2359-2366, Dec. 1992
[53]HSMS-286x Series, Surface Mount Microwave Schottky Detector Diodes, Data Sheet, Avago technology
[54]Joseph J. Nahas, “Modeling and computer simulation of a microwave-to-DC energy conversion element,” IEEE Transaction on Microwave Theory and Techniques, vol. MTT-23, no. 12, pp. 1030-1035, Dec. 1975
[55]HSMS-282x Series, Surface Mount Microwave Schottky Detector Diodes, Data Sheet, Avago technology
[56]Application Note 1124, Linear models for diode surface mount package, Avago technology
[57]M.A. Kossel, R. Kung, H. Benedickter, and W. Bachtold, “An active tagging system using circular polarization modulation,” IEEE Trans. Microwave Theory Tech., vol. 47, no. 12, pp. 2242-2248, Dec. 1999
[58]Reza Dehbashi, Keyvan Forooraghi, and Zahra Atlasbaf, “Active integrated antenna based rectenna using a new probe-fed U-slot antenna with harmonic rejection,” IEEE Antenna and Propagation Society International Symposium, pp. 2225-2228, July 2006
[59]Reza Dehbashi, Zahra Atlasbaf, and Keyvan Forooraghi, “New compact size microstrip antennas with harmonic rejection,” IEEE antennas and wireless propagation letters, vol. 5, no. 1, pp.395-398, Dec. 2006
[60]K. Chang, R. A. York, P. S. Hall, and T. Itoh, “Active integrated antennas, “IEEE Trans. Microwave Theory and Techniques, vol. 50, no. 3, pp. 937-944, Mar. 2002
[61]Bee Yen Toh, Robert Cahill and Vincent F. Fusco, “Understanding and measuring circular polarization,” IEEE Transactions of Education, vol. 46, no. 3, pp. 313-318, August 2003
[62]Ji-Yong Park, Sang-Min Han, and Tatsuo Itoh, “A rectenna design with harmonic-rejecting circular-sector antenna,” IEEE Antenna and Wireless Propagation Letter, vol. 3, no. 1, pp. 52-54, 2004
[63]Vesna Radisic, Yongxi Qian and Tatsuo Itoh, “Class F power amplifier integrated with circular sector microstrip antenna,” IEEE MTT-S Digest, pp. 687-690, 1997
[64]Sang-Min Han, Ji-Yong PARK, and Tatsuo Itoh, “A self-biased receiver system using the active integrated antenna,” IEICE Transactions communication, vol. E89-B, no. 2, pp. 570-575, Feb. 2006
[65]Sungjoon Lim, Kevon M. K. H. Leong, and Tatsuo Itoh, “Adaptive power controllable retrodirective array system for wireless sensor server applications,” IEEE Transactions on Microwave Theory and Techniques, vol. 53, no. 12, pp. 3735-3743, Dec. 2005
[66]V. Radisic, S. T. Chew, Y. Qian and T. Itoh, “High efficiency power amplifier integrated with antenna,” IEEE Microwave Guided Wave Letter, vol.7, pp. 39-41, Feb. 1997
[67]Meng Hou and Qing-xin Chu, “A H-shaped harmonic suppression active integrated antenna,” APMC, vol. 5, pp. 4, Dec. 2005
[68]Reza Dehbashi, Keyvan Forooraghi and Zahra Atlasbaf, “Active integrated antenna based rectenna using a new probe-fed U-slot antenna with harmonic rejection,” IEEE International Symposium Antenna and Propagation Society, pp. 2225-2228, July 2006
[69]Yasushi Horri and Makoto Tsutsumi, “Harmonic control by photonic bandgap on microstrip patch antenna,” IEEE Microwave and guided wave letters, vol. 9, no. 1, pp. 13-15, Jan. 1999
[70]Y. J. Sung, M. Kim, and Y.-S. Kim, “Harmonic reduction with defected ground structure for a microstrip patch antenna,” IEEE Antennas and Wireless propagation letters, vol. 2, no. 1, pp. 111-113, 2003
[71]Kyungrak Kim and Young Joong Yoon, “Microstrip-fed slot antennas with suppressed harmonics,” IEE Transactions on Antennas and Propagation, vol. 53, no. 9, pp. 2809-2817, Sep. 2005
[72]Hyungrak Kim and Young Joong Yoon, Wideband design of the fully integrated transmitter front-end with high power-added efficiency,” IEEE Transactions on Microwave Theory and Techniques, vol. 55, no. 5, pp. 916-924, May 2007
[73]N. Kumprasert and W. Kiranon, “Simple and Accurate Formula for Resonant Frequency of the Circular Microstrip Disk Antenna,” IEEE Trans. Antennas and Propag., vol. 43, no. 11, pp. 1331-1333, Nov. 1995
[74]Ansoft High Frequency Structure Simulator (HFSS), Ver. 10.1, Ansoft Corporation, 2006
[75]M. Ali, G. Yang and R. Dougal, “Miniature circularly polarized rectenna with reduced out-of-band harmonics,” IEEE Antennas Wireless Propag. Lett., vol. 5, no. 1, pp. 107-110, Dec. 2006
[76]Y.-J. Ren and K. Chang, “New 5.8-GHz circularly polarized retrodirective rectenna arrays for wireless power transmission,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 7, pp. 2970-2976, July 2006
[77]R. Sorrentino and L. Roselli, “A New Simple and Accurate Formula for Microstrip Radial Stub,” IEEE Microw. Guided Wave Lett., vol. 2, no. 12, pp. 480-482, Dec. 1992
[78] “Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields 3kHz to 300GHz,” ANSI/IEEE, 1999
[79]D.M. Spillman and E.S. Takeuchi, “Lithium ion batteries for medical devices,” Battery Conf. on Applicat. and Advanc., Jan. 1999, pp. 203-208
[80]J. Kim and R.-Samii, “Implanted antennas inside a human body: simulations, designs, and characterizations,” IEEE Ttrans. Microw. Theory and Tech., vol. 52, no. 8, pp. 1934-1943, Aug. 2004
[81]P. Li, R. Bashirullah, and J. C. Principe, “A low power battery management system for rechargeable wireless implantable electronics,” in Proc. Int. Symp. on Circuit and System, May 2006, pp. 1139-1142
[82]P. Soontornpipit, C. M. Furse, and You Chung Chung, “Design of implantable microstrip antenna for communication with medical implants,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 8, pp. 1944-1951, Aug. 2004
[83]G. D. Vita and G. Iannaccone, “Design criteria for the RF section of UHF and microwave passive RFID transponders,” IEEE Trans. Microw. Theory Tech., vol. 9, no. 9, pp. 2978-2990, Sep. 2005
[84]M. Ali, G. Yang, and R. Dougal, “Miniature Circularly Polarized Rectenna with reduced out-of-band harmonics,” IEEE Antennas Wireless Propag. Lett., vol. 5, no.1, pp. 107-110, Dec. 2006
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊