[1]Aggarwal, B., “B-spline finite elements for plane elasticity problems” , Texas A&M university, 2006.
[2]Anand, V.B., Computer graphics and geometric modeling for engineers, John Wiley &Sons,Inc., 1993.
[3]Beissel, S. and Belytschko, T., “Nodal integration of the element–free Galerkin method”, Computer methods in applied mechanics and engineering, Vol. 139, 49-74, 1996.
[4]Clough, R.W., The finite element method in plane stress analysis. Proceedings of American society of civil engineers, 2nd conference on electronic computation, Pittsburgh, PA, 345-378, 1960.
[5]Courant, R., Variational methods for the solution of problems of equilibrium and vibrations. Bulletin of the American mathematical society, Vol. 49, 1-23, 1943.
[6]Fuch, H., Kedem, Z. and Naylor, B., “Predetermining visibility priority in 3-d scenes”, Proceedings of siggraph, Vol.13, 175-181, 1979.
[7]Fuch, H., Kedem, Z. and Naylor, B., “On visible surface generation by a priori tree structures”, Proceedings of siggraph, Vol.14, 124-133, 1980.
[8]Höllig, K., Finite element methods with B-splines, Society for industrial and applied mathematics, Philadelphia, 2003.
[9]Höllig, K., Horner, J. and Pfeil, M., “Parallel finite element methods with weighted linear B-splines”, High performance computing in science and engineering '07: Transactions of the high performance computing center, Stuttgart (HLRS),667,2008.
[10]Hikmet, C., Nazan, C. and Khaled, E., “B-spline interpolation compared with finite difference, finite element and finite volume methods which applied to two-point boundary value problems”, Applied mathematics and computation, Vol. 175, 72 - 79, 2006.
[11]Liang, X., Jian, B. and Ni, G., “The B-spline finite element method in electromagnetic field numerical analysis”, IEEE transactions on magnetics, Vol. 23, 2641 - 2643, 1987.
[12]Liu, G. R., Mesh free methods: moving beyond the finite element method, CRC press, Boca raton, 2003.
[13]Ni, G., Xu, X. and Jian, B., “B-spline finite element method for eddy current field analysis”, IEEE transactions on magnetics, Vol. 26, 723 - 726, 1990.
[14]Reddy, J. N., An introduction to the finite element method, McGraw-Hill, Texas, 2006.
[15]Schoenberg, I. J., “Contributions to the problem of approximation of
equidistant data by analytic functions”, Quart. Appl. Math., Vol. 4, 45-99,112-141 , 1946.
[16]Xiang, J., Chen, X., He, Y. and He, Z., “The construction of plane elastomechanics and mindlin plate elements of B-spline wavelet on the interval”, Finite elements in analysis and design, Vol. 42, 1269 - 1280, 2006.
[17]Zamani, N,G., “A least squares finite element method applied to B-spline”, Journal of the Franklin institute, Vol. 311, (3), 195-208, 1981.
[18]Zamani, N,G., “Least squares finite element approximation of navier’s equation”, Journal of the Franklin Institute, Vol. 311, (5), 311-321, 1981.
[19]陳政德,“B-spline有限元素法於二維平面應力問題收斂性探討”, 國立成功大學機械工程研究所碩士論文, 2008.[20]趙啟翔,“B-spline有限元素法於二維平面應力問題之研究”, 國立成功大學機械工程研究所碩士論文, 2007.[21]廖宏哲, “二維B-spline有限元素法不規則邊界形狀處理及於平板上的應用”, 國立成功大學機械工程研究所碩士論文, 2007.