跳到主要內容

臺灣博碩士論文加值系統

(35.172.223.30) 您好!臺灣時間:2021/07/25 12:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林振瑋
研究生(外文):Zhen-wei Lin
論文名稱:輥輪流平與氣冷式機車引擎熱液動之性能分析
論文名稱(外文):The Thermal-Hydraulic Analysis of Roller Leveling and Air-Cooling Motorcycle Engine
指導教授:張錦裕張錦裕引用關係
指導教授(外文):Jiin-yuh Jang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系碩博士班
論文種類:學術論文
畢業學年度:96
語文別:中文
論文頁數:82
中文關鍵詞:流平氣冷式機車引擎
外文關鍵詞:levelingAir-Cooling Motorcycle Engine
相關次數:
  • 被引用被引用:1
  • 點閱點閱:160
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文利用流體力學理論,以數值方法模擬研究輥輪流平機制與氣冷式機車引擎熱液動之性能分析。
流平分析分別模擬1.牛頓流體(n=1)和非牛頓流體(μ=f(r));2.非牛頓流體(μ= f(r))在不同表面張力σ下(0.014 N/m、0.028 N/m與0.056N/m);3.非牛頓流體(power law)在不同n值(1.2、1.0、0.8)的情況下,各參數對流平時間影響。結果發現牛頓流體(n=1)比非牛頓流體的(μ=f(r))流平時間還長,兩者的半衰期時間為0.55ms、0.39ms;改變表面張力σ為0.014、0.028與0.056 N/m時,我們可以得到半衰期時間為0.76、0.39與0.19 ms。得到當表面張力減小時,流平時間會增加;不同n值的情況下,可以看到當n值分別為1.2、1.0、0.8下,其所需之半衰期時間為1.7、0.55、0.1 ms。得到當n值增加,流平時間也增加。跟不同的n值作比較,我們所使用的非牛頓流體(μ=f(r))是一個n<1的擬塑性流體,根據它的半衰期時間可以看出它是一個0.8<n<1的非牛頓流體。
氣冷式引擎模擬在不同風扇轉速下(4500rpm、9000rpm、18000rpm),的流場變化與汽缸壁上的熱傳係數h值的分佈。可以發現當風扇轉速越快(4500rpm→9000rpm→18000rpm)時,換算成的平均流速(9.3m/s→18.9m/s→38.1m/s)和流量(6.9m3/min→14.0m3/min→28.4 m3/min)也變的越大;流經汽缸壁上的流體溫度(700C→620C→560C)也越低;流經汽缸所造成的壓降也變的越大(250Pa→1000Pa→5000Pa);以風扇轉速9000rpm為例,迎風面上的熱傳係數h值最大(約160 W/m2K),背風面上的熱傳係數h值最小(約60 W/m2K),而兩側的熱傳係數h值介於迎風面和背風面之間(約120 W/m2K)。我們根據上述的資料找到一條風扇轉速(ω)和熱傳係數(h)的關係式: h=0.209*w^0.691。
上式所適用的風扇轉速為4500rpm~18000rpm。
This thesis utilized fluid dynamics theory to study the thermal-hydraulic analysis of roller leveling and air-cooling motorcycle engine.

In leveling, we use 1. different fluid (Newton fluid(μ=cons.) and non-Newton fluid(μ=f(r)) );2. different surface tension (0.014、0.028 and 0.056 N/m);3. non-Newton fluid for different power-law index n (1.2、1.0、0.8). In the numerical results ,we could find that when Newton fluid、lower surface tension and higher power-law index n were applied, the time needed for leveling was longer .We also find the non-Newton fluid (μ=f (r)) is a pseudoplastic fluid (n<1),the power-law index n is within 0.8 to 1.0.

In the study, the three different fan speeds (4500rpm、9000rpm、18000rpm) were used to investigate the heat transfer coefficient for the air-cooling motorcycle engine. For fan speed w=4500rpm、9000rpm and 18000rpm, the averaged velocity is 9.3m/s,18.9m/s and 38.1m/s, respectively, while the flow rate is 6.9m3/min, 14.0m3/min, 28.4m3/min, respectively. The averaged temperature on the cylinder is 700C, 620C, 560C, respectively; the pressure drop is 250Pa, 1000Pa, 5000Pa, respectively. The maximum heat transfer coefficient was occurred on the windward; the minimal heat transfer coefficient is on the leeward. It is also shown that the heat transfer coefficient h varies with V 0.68. Regression analysis was conducted to obtain h=0.209*w^0.691 , which can be applied for 4500 <w<18000 .
摘要……………………………………………………………………Ⅰ
英文摘要………………………………………………………………Ⅱ
致謝……………………………………………………………………Ⅲ
目錄……………………………………………………………………Ⅳ
表目錄…………………………………………………………………Ⅴ
圖目錄…………………………………………………………………Ⅵ
符號說明………………………………………………………………Ⅷ
第一章 緒論…………………………………………………………1
第二章 理論分析…………………………………………....………15
第三章 數值方法………………………………..……………………27
第四章 實驗設備與方法…………………………………………….42
第五章 結果與討論…………………………………………..………46
第六章 結論……………………………………………………..75
參考文獻………………………………………………………………78
自述……………………………………………………………….……82
1.Pearson, J. R. A., “The Instability of Uniform Viscous Flow under Rollers and Spreaders”, J. Fluid Mechanics, Vol.7, pp.481-500, 1959.
2.Yih, C. S., “Instability of a Rotating Liquid Film with a Free Surface”, Proc. Roy. Soc. Section A., Vol.258, pp.63-89, 1960.
3.Pitts, E. and Greiller, J., “The Flow of Thin Liquid Films between Rollers”, J. Fluid Mechanics, Vol.11, pp.33-50, 1961.
4.Mill, C. and South, G., “Formation of ribs on rotating rollers”, J. Fluid Mechanics, Vol.28, pp.253-259, 1967.
5.Pulkrabek, W. W. and Munter, J. D., “Knurl Roll Design for stable Rotogravuer Coating”, Chemical Engineering Science, Vol.38, no.8, pp.1309-1314, 1983.
6.Coyle, D. J., “The Fluid Mechanics of Roll Coating: Steady flows, Stability and Rheology”, Ph.D. thesis, University of Minnesota, Minneapolis, MN, 1984.
7.Savage, M. D., “Mathematical model for the onset of ribbing”, AIChE J., Vol.30, pp.999–1002, 1984.
8.Kheshgi, H. S, “Profile equations for film flows at moderate Reynolds numbers”, AICHE J. Vol.35, pp.1719-1727., 1989.
9.Coyle, D. J., Macosko, C. W. and Scriven, L. E, “Stability of Symmetric Film Splitting Between Counter-rotating Cylinders”, J. fluid Mechanics, Vol.216, pp.437-458., 1990.
10.Savage, M. D., “Meniscus Insatbility and Ribbing”, Industrial Coating Research, Vol.2, pp.47-58, 1992.
11.Hasegawa, T. and Sorimachi, K., “Wavelength and Depth of Ribbing in Roll Coating and Its Elimination”, AICHE J., Vol.39, No.6, pp.935-945, 1993.
12.Carvalho, M. S., Anderson T. J., Scriven L. E., “Ribbing instability In forward deformable roll coating”, Proceedings of the TAPPI Coating Conference, pp. 99–104, 1994.
13.Coyle, D. J., Knife and Roll Coating, Chap. 12 in Liquid Film Coating, ed. by Kistle, S. F. and Schweizer, P. M., Chapman & Hall, London, UK, 1997.
14.Gurfinkel C. M. E. and Patera, A. T., “Three-Dimensional Ribbing Instability in Symmetric Forward Roll film Coating Process”, J. Fluid Mechanics, Vol.355, pp.323-359, 1997.
15.Carvalho, M. S. and Scriven, L. E., “Three Dimensional stability Analysis of Free Surface Flows: Application to Forward deformable Roll Coating”, Journal of Computational Physics, vol.151, pp.534-562, 1999.
16.Varela L. F., Pauchard, L., Rosen, M., Rabaud, M., “Non-Newtonian Effects on Ribbing Instability Threshold”, J. Non-Newtonian Fluid Mech., Vol.103, pp.123-139, 2002.

17.Landau, L. and Lifshitz, E. M., Fliud Mechanics, Pergamon: Oxford, 1959.
18.Orchard, S. E, “On Surface Levelling in Viscous Liquids and gels”, Applied Science Research, Section A, Vol.11, pp.451-464., 1962.
19.Schwartz, L. W. and Weidner, D. E., “An Analysis of the Effect of Surfactant on the Leveling Behavior of a Thin Liquid Coating layer”, American Chemical Society, Vol.11, pp.3690-3693, 1995.
20.李進修、王漢英,”汽機車引擎設計與分析技術”,全華科技圖書股份有限公司,2005.
21.Li, C. H.,”Thermal and Mechanical Behavior of an L-4 Engine”,SAE paper 881149,1988.

22.Yoshida, M. ,Ishihara, S. ,Murakami, Y., and Yamamoto, M. , ”Air-cooling Effect of fins on a Motocycle Engine” , JSME International Journal Vol.49, NO.3 pp. 869-875, 2006.
23.Rakopoulos, C. D., Mavropoulos, G. C., ”Experimental evaluation of local instantaneous heat transfer characteristics in the combustion chamber of air-cooled direct injection diesel engine ”, Energy, Vol.33(7), pp.1084-1099, 2008.
24.Sanli, A., Ozsezen, A. N., Kilicaslan, I. and Canakci, M., “The influence of engine speed and load on the heat transfer between gases and in-cylinder walls at fired and motored conditions of an IDI diesel engine”, Applied Thermal Engineering, Vol. 28, pp. 1395-1404, 2008.
25.Wu, Y. Y., Chen, B. C., Hsieh, F. C., “Heat transfer model for small-scale air-cooled spark-ignition four-stroke engines ”, International Journal of Heat and Mass Transfer, Vol. 49, pp. 3895-3905, 2006.
26.Jafari, A., and Hannani, S. K., “Effect of fuel and engine operational characteristics on the heat loss from combustion chamber surfaces of SI engines ”, International communication of Heat and Mass Transfer, Vol. 33, pp. 122-134, 2006.
27.Noori, A. R.,and Rashidi, M., “Computational Fluid Dynamics Study of heat transfer in a spark-ignition Engine combustion chamber”, Journal of heat transfer, Vol. 129, pp. 609-616,2007.
28.Mohammadi, A., Yaghoubi, M., and Rashidi, M., “Analysis of local convective heat transfer in a spark ignition engine”, International communication of Heat and Mass Transfer, Vol. 35, pp. 215-224, 2008.

29.CFD-ACE(U),CFD Research Corporation, Alabama, USA, 2003.
30.STAR CD V.3.10B,”simulation of turbulent Flow in Arbitrary Regions”,Computational Dynamics Limited,UK,2001.
31.Launder, B. E., and Spalding,A.D.,”mathematical Models of Turbulence ,pp.90-100,Academic,London,1972.
32.Van Doormaal, J. P. and Raithby, F. D., “Enhancements of the SIMPLE Method predicting Incompressible fliud flows”, Numerical heat Transfer, Vol. 7, pp. 147-163, 1984.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top