跳到主要內容

臺灣博碩士論文加值系統

(3.235.227.117) 您好!臺灣時間:2021/07/28 03:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:施宇晉
研究生(外文):Yu-jin Shih
論文名稱:雷射投影成像法之光聚合反應研究
論文名稱(外文):Study of photo-polymerization in laser projection imaging method
指導教授:林震銘
指導教授(外文):Jehn_ming Lin
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:154
中文關鍵詞:雷射投影成像光聚合硬化
外文關鍵詞:Laser projection imagingPhoto-polymerizationCuring
相關次數:
  • 被引用被引用:0
  • 點閱點閱:110
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文之研究目的是以雷射引發之光聚合反應造成液態高分子硬化現象及探討不同雷射條件作用下對感光性高分子之硬化影響。在實驗方面,第一部份是以連續式紫外光源照射光硬化樹脂進行巨觀之光聚合成形,探討不同照射能量和照射時間對光硬化樹脂硬化成形之影響。第二部分利用Nd-YAG雷射配合掃瞄振鏡系統進行光罩之製作,並在石英玻璃上旋轉塗佈UV 膠,利用準分子雷射配合自製光罩對UV膠進行投影曝光,針對不同雷射脈衝條件進行微觀光聚合成形,並使用光學及立體顯微鏡觀察其硬化結果。
在數值分析方面使用計算流體力學軟體進行連續式熱源之暫態光聚合反應分析,並利用自行撰寫之 FORTRAN 程式分析脈衝式熱源之光聚合反應所造成物理的現象及特性,經由計算結果和實驗所測得的結果具有一致性。本研究證明了使用雷射投影成像技術結合光聚合反應進行硬化成形之可行性,所得之實驗及理論分析結果可作為後續研究之基礎。
The laser assisted photo-polymerization technique and the heat transfer analysis of the laser projection imaging process for manufacturing high-aspect-ratio micro-parts have been investigated in this research. Numerical analysis and experimental observation have been applied to study the photo-polymerization with various laser powers and radiation times. In the experiment, a UV lamp (wavelength of 365 nm) has been used to exposure UV resin to form macro photo-polymerization parts. Furthermore a scanning Nd-YAG laser has been applied to build acrylic (PMMA) masks and a pulsed UV excimer laser, through the mask, has been focused on the UV resin to form the micro photo-polymerization parts.
In the theoretical analysis, a computational fluid dynamics software has been used to solve the unsteady photo-polymerization model for a continuous curing process. Alternatively a program with FORTRAN code has been developed to analysis the process for the short pulse laser radiation. The results show a good agreement between the numerical analysis and the experiments of the curing dimensions. This research confirms the feasibility of the laser projection imaging technique with the photo-polymerization on UV resin in micro-part formation.
目 錄

中文摘要………………………………………………………… I
英文摘要………………………………………………………… II
誌謝……………………………………………………………… III
目錄……………………………………………………………… IV
表目錄…………………………………………………………… IX
圖目錄…………………………………………………………… XII
符號說明………………………………………………………… XX

第一章 緒論……………………………………………………… 1
1-1 研究目的…………………………………………………… 1
1-2 文獻回顧…………………………………………………… 3
1-2.1 雷射光聚合成形………………………………………… 3
1-2.2 雷射光聚合成形之數值分析…………………………… 6
1-2.3 雷射直接成像…………………………………………… 7
1-3 本文架構…………………………………………………… 10

第二章 製程原理簡介…………………………………………… 11
2-1 光硬化樹脂的組成成份…………………………………… 11
2-2 感光性高分子光聚合原理………………………………… 13
2-3 自由基連鎖聚合反應機制………………………………… 16
2-4 光學成形製程介紹………………………………………… 17
2-4.1 光阻形式與塗佈方法…………………………………… 17
2-4.1.1 光阻形式……………………………………………… 17
2-4.1.2 光阻塗佈方法………………………………………… 19
2-4.2 曝光技術………………………………………………… 20
2-4.2.1 曝光光源種類………………………………………… 21
2-4.2.2 曝光型式……………………………………………… 23
2-4.3 光罩製作………………………………………………… 26

第三章 數值分析………………………………………………… 28
3-1 雷射光聚合數值模擬理論簡介…………………………… 28
3-2 數值計算軟體 FLUENT 及計算流程簡介………………… 35
3-3 雷射光聚合數值模擬分析………………………………… 36
3-3.1 溫度場數值分析之假設………………………………… 36
3-3.2 FLUENT 數值模擬之光聚合模型可靠度驗證………… 36
3-3.2.1 模型之建立…………………………………………… 37
3-3.2.2 邊界條件之設定……………………………………… 38
3-3.2.3 感光性高分子材料性質與參數之設定……………… 40
3-3.2.4 數值分析與文獻結果比較…………………………… 41
3-4 結果與討論………………………………………………… 52

第四章 實驗……………………………………………………… 53
4-1 連續式紫外光源聚合實驗………………………………… 53
4-1.1 實驗設備及配置………………………………………… 53
4-1.2 實驗條件及方法………………………………………… 55
4-1.3 結果觀察………………………………………………… 56
4-1.4 連續式熱源之光聚合數值分析………………………… 60
4-1.4.1 模型建立與邊界設定………………………………… 60
4-1.4.2 光硬化樹脂之材料性質與參數之設定……………… 62
4-1.4.3 模擬計算結果………………………………………… 62
4-1.5 數值分析與實驗結果之比較…………………………… 73
4-2 旋轉塗佈UV膠實驗及光學性質之檢測…………………… 76
4-2.1 實驗設備及配置………………………………………… 76
4-2.2 實驗條件及方法………………………………………… 77
4-2.3 結果觀察………………………………………………… 79
4-3 雷射掃瞄直寫光罩實驗……………………………………… 81
4-3.1 實驗設備及配置………………………………………… 81
4-3.2 實驗條件及方法………………………………………… 83
4-3.3 結果觀察………………………………………………… 84
4-4 脈衝式準分子雷射光聚合成形實驗……………………… 88
4-4.1 實驗設備及配置……………………………… …………88
4-4.2 實驗條件及方法………………………………………… 89
4-4.3 結果觀察………………………………………………… 91
4-4.3.1 UV膠於石英玻璃上方之光聚合成形實驗結果……… 91
4-4.3.2 UV膠於石英玻璃下方之光聚合成形實驗結果……… 106
4-4.4 脈衝式熱源之光聚合數值分析………………………… 109
4-4.4.1 模型建立與邊界設定………………………………… 109
4-4.4.2 模擬參數與無因次化………………………………… 110
4-4.4.3 模擬計算之結果……………………………………… 113
4-4.5 數值分析與實驗結果之比較…………………………… 117
4-5 結果與討論………………………………………………… 119

第五章 綜合討論與建議…………………………………………… 121
5-1 綜合討論……………………………………………………… 121
5-2 未來發展與建議……………………………………………… 125

參考文獻…………………………………………………………… 126
附錄A 連續式熱源之無因次解…………………………………… 131
附錄B UV膠於石英玻璃下方之成形硬化寬度結果……………… 151
自述………………………………………………………………… 154
參考文獻

[1] Decker, C., “UV-Curing Chemistry: Past, Present, and Future”, v 59,
No. 751, 1987.
[2]余福熙, “如何選擇及使用紫外線/可視光硬化型接著劑” , 化工商情, No. 27, 2001.
[3] Decker, C. , “Photoinitiated crosslinking polymerization“ , Progress in Polymer Science, v 21, No. 4, pp. 593-650, 1996.
[4] Jacobs, R. F., “Rapid Prototyping and Manufacturing: Fundamentals of Stereo-lithography”, 1st ed., Society of manufacturing engineers in cooperation with the computer and automated system association of SME, Dearborn, 1992.
[5] Tachihara, S., Shimizu S., “Development of laser direct imager”, Proceedings of SPIE v 4902, 2002.
[6]Hull, C., “Apparatus for production of three-dimensional objects by stereolithography”, U.S. Patent, No. 4, 1986.
[7] Maruo, S., Ikuta, K., ” Submicron stereolithography for the production of freely movable mechanisms by using single-photon polymerization”, Sensors and Actuators, A: Physical, v 100, No. 1, pp. 70-76, 2002.
[8] Hirowatari K., Ikuta K., “Real three dimensional micro fabrication using stereolithography and metal molding”, IEEE Micro Electro Mechanical Systems, pp. 42-47, 1993.
[9] Ikuta, K., Ogota, T., Tsubio, M., Kojima, S., “Development of mass productive micro stereolithography”, in proceedings of the 8th IEEE Workshop on Micro Electro Mechanical System, pp. 301-306,1996.
[10] Zhang, X., Jiang, X.N., Sun, C., “Micro-stereolithography of polymeric and ceramic microstructures”, Sensors and Actuators, A: Physical, v 77, No. 2, pp. 149-156, 1999.
[11]Bertsch, A., Bernhard P., Vogt, C., Renaud, P., “Rapid prototyping of small size objects”, Rapid Prototyping Journal, v 6, No. 4, pp. 259-266, 2000.
[12] Flach, L.; Chartoff, R.P. ”Process model for nonisothermal photopolymerization with a laser light source. I : Basic model development.”, Polymer Engineering and Science, v 35,No. 6,
pp. 483- 492, 1995.
[13] Nakamoto, T., Yamaguchi, K.i, Abraha, P. A., Mishima, K., “Manufacturing of three-dimensional micro-parts by UV laser induced polymerization”, Journal of micromechanics and microengineering, v 6, No.2, pp. 240-253, 1996.
[14]Hur, S. S., Youn, J. R., “Thermal deformation of a photo-cured polymer for the analysis of stereolithography”, Polymer-plastics technology and engineering, v 39, No. 4, pp. 651-666, 2000.
[15] Hong, W., Lee, Y.T., Gong, H., ”Thermal Analysis of Layer Formation in A stepless rapid prototyping process”, Applied thermal engineering,
v 24, pp.255-268, 2004.
[16] Barbucha, R., Kocik, M., Mizeraczyk, J., Koziol, G., Borecki, J. “Laser direct imaging of high-density interconnect patterns on PCB”, Proceedings of SPIE - The International Society for Optical Engineering, v 6157, pp. 61570L, 2005.
[17] Barbucha, R., Kocik, M., Mizeraczyk, J., Koziol, G., Borecki, J., “Laser direct imaging of high density patterns on PCB covered by photoresist”, Proceedings of SPIE - The International Society for Optical Engineering, v 6604, 14th International School on Quantum Electronics: Laser Physics and Applications, pp. 660411, 2007.
[18] Barbucha, R. ,Kocik, M.; Mizeraczyk, J.; Koziol, G.; Borecki, J., “Comparison between conventional and laser method of imaging tracks on PCB”, Proceedings of SPIE - The International Society for Optical Engineering, v 6598, Laser Technology VIII: Applications of Lasers,
pp. 65980I, 2007.
[19]陳劉旺, “工業塗料與高分子化學” , 高立圖書有限公司, 1997.
[20]范啟明編譯, “現代聚合物化學” , 東華書局出版, 1981.
[21]張上鎮, “紫外光硬化塗料與塗裝(1)” , 塗料與塗裝技術, No.88, 2002.
[22]劉建良, ” UV Curing 發展簡介及應用” , 化工科技與商情, No.41, 2003.
[23]鶴田禎二著, 薛敬和譯, ”高分子合成反應” , 高立書局出版, 2001.
[24]Odian, G., ”Principles of polymerization” , 1991.
[25] Fang, N., Sun, C., Zhang, X.,” Diffusion-limited photopolymerization in scanning micro-stereolithography” , Applied Physics A: Materials Science and Processing, v 79, No. 8, pp. 1839-1842, 2004.
[26] McGlynn, S. P., Azumi, T., Kinoshita, M., “Molecular spectroscopy of the triplet state” , 1969.
[27] Narahara, H., Tanaka, F.,Kishinami, T., Igarashi, S.; Saito, K.,
” Reaction heat effects on initial linear shrinkage and deformation in stereo lithography”, Rapid Prototyping Journal, v 5, No. 3,pp. 120-128, 1999.
[28]葉明國編譯, “聚合物化學” , 新學識文教出版中心, 1994.
[29]羅文雄, 蔡榮輝, 鄭岫盈, “半導體製造技術” , 滄海書局出版, 2003.
[30]莊達人編著, “VLSI製造技術” , 高立出版, 2002.
[31]陳建人, “微機電系統技術與應用” , 行政院國家科學委員會精密儀器發展中心出版, 1994.
[32]施敏, “半導體元件物理與製作技術第二版” , 國立交通大學出版, 2002.
[33]丁勝懋編著, “雷射工程導論修訂第四版” , 中央圖書出版, 1995.
[34]高啟清, “HDI Image Transfer Technology and Trend” , 2004.
http://www.me.cycu.edu.tw/HDI040415.pdf
[35] Jain, K., Zemel, M., Wojcik, L., Nunes, C., Klosner, M., “Laser Projection Imaging”.
[36]吳昌崙, 張景學編著, “半導體製造技術” , 新文京開發出版, 2003.
[37]許坤明編撰, 高中職學生微機電製程實驗教材, 國立虎尾科技大學.
http://www.nsc.gov.tw/scicircus/public/Attachment/731214361471.pdf
[38]永松元太郎, 乾英夫, “感光性高分子” , 東京講談社, 1977.
[39] Corcione, C. E., Greco, A., Maffezzoli, A., “Temperature evolution during stereolithography building with a commercial epoxy resin” , Polymer Engineering and Science, v 46, No. 4,pp. 493-502, 2006.
[40] Michael F. P., Gerald W. Y., “A mathematical model for photopolymerization from a stationary laser light source.” , Macromolecular Theory and Simulations, v 14, No. 1, pp. 26-39, 2005.
[41] Lee, J. H., Prud'homme, R. K., Aksay, I. A., “Cure depth

in photopolymerization: Experiments and theory” , Journal of Materials Research, v 16, No. 12, pp. 3536-3544, 2001.
[42]Tryson, G. R., Shultz, A. R., “Calorimetric study of acrylate photopolymerization”., Journal of Polymer Science, Polymer Physics Edition, v17, No. 12, pp. 2059-2075, 1979.
[43]蘇青森著, “儀器學” , 五南圖書出版公司印行, 2002.
[44] Eckardt, R. C., Masuda, H., Fan, Y. X., Byer, R. L., ”Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB2O4, LiIO3, MgO:LiNbO3, and KTP measured by phase-matched second-harmonic generation.”, IEEE Journal of Quantum Electronics, v 26, No. 5 ,
pp. 922-933, 1990.
[45]何清政, 計算流體力學筆記, 國立成功大學機械研究所, 2007.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top