跳到主要內容

臺灣博碩士論文加值系統

(35.175.191.36) 您好!臺灣時間:2021/07/30 12:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林益全
研究生(外文):Yi-cyuan Lin
論文名稱:光晶微帶天線系統理論與傳輸效率提升之研究
論文名稱(外文):Photonic Crystal Microstrip Antenna(PCMA) System Theory and Transmission Efficiency Enhancement Study
指導教授:賴新一
指導教授(外文):Hsin-Yi Lai
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系碩博士班
論文種類:學術論文
畢業學年度:96
語文別:中文
論文頁數:157
中文關鍵詞:實驗設計微帶天線光晶光晶帶隙有限時域差分表達式
外文關鍵詞:design of experimentationmicro-strip antennaphotonic crystalphotonic band gapfinite-difference time-domainDLVO
相關次數:
  • 被引用被引用:0
  • 點閱點閱:83
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨者行動通訊市場的快速發展,相關應用商品不斷推陳出新而射頻天線模組更是關鍵技術,需具備符合市場對於天線小型化和客製化的技術趨勢。其中天線模組中的微帶天線具有體積小、重量輕、厚度薄、氣動性優、又可與印刷電路版製程結合適合大量生產,十分具有經濟效益。然而現今微帶天線在傳輸效率的提升上一直存在一個困擾,即電磁波在傳遞時會因微帶天線在截斷處產生表面波進而影響微帶天線之傳輸效率。若在微帶天線中加入週期性介電結構則會因光子晶體帶隙存在進而抑制表面波提高微帶天線傳輸效率。自從光子晶體被發現可做為有效操控電磁波傳輸行為的新穎材料則可通過縮放比例關係將光子晶體中的現象應用在微帶天線成為光子晶體微帶天線。
傳統的光子晶體微帶天線大多屬於經驗式的設計除了因人而異外,更有傳承及效率改善不構具體的問題,本研究基於理論、模擬與實務並重之基礎作傳輸效率改善的研究,主要利用有限時域差分表達式進行電磁波於光晶微帶天線之模擬。研究特色採用實驗設計法取代過往的直覺式經驗設計法找出參數與參數交互因子間之影響並建構出迴歸模型便於往後延伸之應用。研究流程包括文獻歸納整理,理論模型之建構,電腦化與系統化之光晶體微帶天線估算,以及研究資料擷取分析印證比對。
本研究首先取法自然採用奈米沉積之技術來支持本文所需製程技術,將微帶天線依比例縮小至微米級尺度後植入光晶薄膜中,此結構本文稱為複化光晶微帶天線。接下將複化光晶微帶天線以有限時域差分表達式進行電磁波模擬,而本文於有限時域差分表達式之模擬多考慮兩介質交接面之處理,因複化光晶微帶天線與一般微帶天線之差別除了結構模型變小且更複雜外、對於兩介質交接面亦會增加對系統之影響,本文依此論證此影響外並也因考慮了此因素而提高有限時域差分表達式模擬之準確度。
在模擬複化光晶微帶天線改善模型,本文先導入實驗設計法來做模擬前之規劃,因對於一個參數與反應量關係未明之複雜化系統,因關鍵因素及結構組成未知,尚無以理論可直接進行推導則,鑑此此思維改以實驗設計法來建立並總結歸納出主要顯著因子和因子間交互作用之強弱,並建構出複化光晶微帶天線之迴歸模型。經實驗設計證實複化光晶微帶天線與微帶線天線可提昇傳輸效率高達17%,而比對相似結構之一般型光晶微帶天線模型之文獻可提昇傳輸效率7%到28%。
最後,本文提出一套完整設計流程,並將此流程應用在兩個應用例上,包括給定效率製作最低成本複化光晶微帶天線之應用例和給定頻率搜尋最高效率複化光晶微帶天線之應用例,依此應用例可延伸應用於不同的情況來搜尋迴歸模型,便於往後實務界在複化光晶微帶天線領域上為日後快速設計之參考依據。
As the mobile communication market is quickly developed, all of the related products continue to find new ways of production from old models, However the key technology is embedded in radio frequency antenna module that needs to full, fit miniaturization and customization. The features of micro-strip antenna module include low weight, low profile, good aerodynamics, and easy combination of a circuit manufacture with mass production, and having high economic effect. Recently micro-strip antenna has a key investigation issue on enhancing transmission efficiency, because it produces surface wave on cutting section of micro-strip antenna to influence transmission efficiency of micro-strip antenna. The addition of periodic dielectric structure can suppress micro-strip’s surface wave to promote transmission efficiency of micro-strip antenna, by properly design to have photonic band gap. Since photonic crystal can be detected to effectively control electromagnetic wave behavior, and this cab be used by the ratio of scale in micro-strip antenna for photonic crystal.
In the past, photonic crystal antenna has been designed by experience. This paper is geared toward establishing a fundamental theory ,and simulation for reality application to enhance system transmission efficiency. The method of finite-difference time-domain approached was used to simulate and characterized electromagnetic wave behaviors in photonic crystal micro-strip antenna. The major feature is to use design of experimentation to replace the traditional experience method to find the factorial and inter-factorial relationship, and to construct a regression model for convenient extended application. The research flow procedures include, theory construction, establishment of estimate photonic crystal systems and computerization, and analysis with verification.
First, the research take nanotechnology of photonic self-assembly film as the nature mode to support necessary manufacturing tech, the micro-strip antenna depends on the ratio of scale of micrometer and is embedded into photonic crystal film. This novel structure is named as the complicated photonic crystal micro-strip antenna in this paper.
Second, this paper employs simulation technique to characterize complicated photonic crystal micro-strip antenna by finite-difference time-domain method. In addition to that, this paper also consider the influence between two material interfaces, since complicated photonic crystal micro-strip antenna is different from that of the traditional micro-strip antenna, not only minimization, but to complicated in shape, It also get better effect on enhancing two material interfaces.
Third, the proposal approach improve on the model for simulating complicated photonic crystal micro-strip antenna, and also to arranging design of experimentation before initial simulation stage. Because the system’s parameter and response do not have available relation, it’s difficult to use classical theory to get a theory of complicated photonic crystal micro-strip antenna, so that to establish the influential factors and interact factor contribution is required to by using design of experimentation. Via design of experimentation the efficiency improvement by the micro-strip antenna was verified to be approximately 17%, as compared to that of tradition photonic crystal micro-strip antenna.
Finally, this paper presents a comprehensive design flow, this flow was also applied to two application examples, one is to set the transmission efficiency and search for lowest cost to make complicated photonic crystal micro-strip antenna, and the other is to set the frequency to search for highest transmission efficiency of complicated photonic crystal micro-strip application example. Both examples serve as a bridge to provide the quick and accurate design means for the design and analysis of the Photonic Crystal Micro-strip Antenna(PCMA) system.
中文摘要...................................................I
英文摘要..................................................II
誌謝......................................................IV
目錄.......................................................V
圖目錄....................................................IX
表目錄....................................................XI
符號說明................................................XIII
第一章 緒論.............................................1
1.1 研究動機...........................................1
1.2 研究目的...........................................5
1.3 研究方法...........................................7
1.4 章節導覽...........................................9
第二章 文獻回顧與基本假設..............................11
2.1 相關文獻回顧......................................11
2.1.1 奈米微粒自組裝光晶薄膜成型理論之文獻回顧....11
2.1.2 光晶微帶天線模型種類與應用之文獻回顧........13
2.1.3 光晶微帶天線傳輸效率提昇研究之文獻回顧......13
2.2 本文之基本假設....................................14
2.3 本文之基本流程....................................16
第三章 光晶微帶天線一般系統及複化實設理論建構..........20
3.1 以布朗動力及DLVO理論建立奈米微粒間之作用勢能......20
3.1.1 奈米微粒膠體溶液之隨機布朗作用力模式........20
3.1.2 以DLVO理論建構奈米微粒間之作用勢能..........25
3.2 以作用勢能建構光晶結構沉積成形之理論模型..........33
3.2.1 以作用勢能建構系統動態方程..................34
3.2.2 以系統動態方程建構布朗動力模型..............34
3.2.3 以Verlet演算法模擬光晶沉積成型流程..........35
3.3 以平面波展開法估算光子能隙理論....................39
3.3.1 由光晶結構建構平面波空間....................41
3.3.2 以平面波展開法計算光子能隙理論..............45
3.3.3 以電磁波極化簡化光子能隙計算理論............51
3.4 以有限時域差分表達式模擬光晶微帶天線電磁場功率....52
3.4.1 由馬克斯威爾方程式到有限時域差分表達式......52
3.4.2 有限時域差分表達式之估算穩定度條件..........58
3.4.3 有限時域差分表達式之完美耦合層邊界條件......58
3.4.4 有限時域差分表達式之估算波源設計............63
3.4.5 應用有限時域差分表達式於光晶微帶天線........65
3.4.6 光晶微帶天線於不同介質交界面之處理..........66
3.4.7 有限時域差分表達式模擬光晶微帶天線流程......67
3.5 由有限時域差分表達式估算天線之傳輸效率............77
3.5.1 由微帶天線特性探討其表面波對傳輸效率之影響..77
3.5.2 由光子能隙改善微帶天線傳輸效率之理論........82
3.5.3 光晶微帶天線傳輸效率之計算..................82
3.6 以實設搜尋關鍵因素並建構複雜化系統之迴歸模型......85
3.6.1 對主要參數做部分因子設計決定顯著因子........86
3.6.2 由部份因子設計之完全因子設計作變異數分析....92
3.6.3 以迴歸模型改善光晶微帶天線效率之理論........92
3.6.4 由實驗設計法改善光晶微帶天線效率之流程......93
第四章 理論模擬與實驗設計結果之印證與應用..............96
4.1 一般型與複化型光晶微帶天線之印證.................96
4.1.1 改良型光晶微帶天線理論模型之模擬印證........97
4.1.2 未實設前複化光晶微帶天線之模擬結果.........102
4.2 以實設改善複化光晶微帶天線系統之模擬與印證......105
4.2.1 依部份因子設計決定顯著因子.................105
4.2.2 依完全因子設計探討交互作用對效率之影響.....114
4.2.3 複化光晶微帶天線系統迴歸模型之建構.........120
4.2.4 複化光晶微帶天線實設模型之比對與印證.......127
4.4 光晶微帶天線之設計應用例.........................132
4.4.1 應用流程之規劃設計.........................133
4.4.2 給定效率製作最低成本複化光晶微帶天線應用例.133
4.4.3 給定頻率搜尋最高效率複化光晶微帶天線應用例.138
第五章 總結與建議.....................................143
5.1 總結.............................................143
5.2 建議.............................................145
參考文獻.................................................147
附錄 A分貝表.............................................150
附錄 B有限時差分表達式數值分析演算步驟...................151
附錄 C光晶微帶天線製作...................................154
1.Buesnel, G. R., Cryan M. J., and Hall P. S., “Harmonic control in active integrated patch oscillators,” Electron. Lett., Vol. 34, pp. 228–229, 1998.

2. B´erenger, J. P., “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys., Vol. 114, pp. 185–200, 1992.

3. Coccioli, R., Yang, F.R., Ma, K.P., and Itoh, T., “Aperture-coupled patch antenna on UC-PBG substrate,” IEEE Trans Microwave Theory Tech., Vol. 47, pp. 2123-2130, 1999.

4. Cassagneau, T. and Caruso, F., “Inverse Opals for Optical Affinity Biosensing,” Advanced Materials, Vol. 14, pp. 1629-1634, 2002.

5. Chiau, C. C., Chen, X., Parini, C. G., “A Sandwiched Multiperiod EBG Structure for Microstrip Patch Antenna,” Microwave Opt. Tech. Lett., Vol. 46, pp. 437–440, 1998.

6. Cadman Darren, Hayes Dvid, Miles Robert, Robert Kelsall, “Simulation Results for a Novel Optical Controlled Photonic Bandgap Structure For Microstrip Lines,” High Frequency Postgraduate Student Colloquium, Vol. 8, pp.110-115, 2000.

7. Ermak, D. L., Buckholz, H., “Numerical Integration of the Langevin Equation: Monte Carlo Simulation,” Journal of Computational Physics, Vol. 35, pp. 169–82, 1979.

8. Femandes, H.C.C., Filho, G. F. S., “HTc Superconducting Planar Antennas Design Using The TTL Methodin the Fourier Transform Domain,“ The Third Intem. Kharkov Symp. Physics and Eng. of Millimeter and Submillimeter Waves, Kharkov, Ucrhia Cod. Proc. Vol. 1, pp. 343-345, 1998.

9. Feke, D.L., Prabhu, N.D., and Mann, J.A., “A Formulation of the Short-range Repulsion between Spherical Colloidal Particles,” The Journal of Physical Chemistry, Vol. 88, pp. 5735-5739, 2001.

10. Gonzalo, R., Maagt, P. and Sorolla, M., "Enhanced patch-antenna performance by suppressing surface waves using photonic-bandgap substrates," IEEE Trans. Microw. Theory Tech., Vol.47, pp.2131–2138, 1999.

11. Gerard Bums, Iain Thayne, “Integration of milimeter-wave planar antennas with photonic crystal structures,” IEEE Topical conference, pp. 318-319, 2003.

12. Gray, J.J., Bonnecaze, R.T., "Adsorption of colloidal particles by Brownian dynamics simulation: kinetics and surface structures," J. Chem. Phys. Vol. 114, pp. 1366-1381, 2001.

13. Hong, C. W., “New Concept for Simulating Particle Packing in Colloidal Forming Process, ” Jounal American Ceram. Cod., Vol. 173, pp. 1117-1135, 1990.

14. Hong, C. W., “From Long-Range Interaction to Solid-Body Contact Between Colloidal Surfaces During Forming,” J. Eur. Ceram. Soc., Vol. 18, pp. 2159–2167, 1998.

15. Leunissen, M.E., Christova, C.G.., Hynninen, A.P., Royall, C.P., Campbell, A.I., Imhof, A., Dijkstra, M., Roij, R.V., and Blaaderen, A.V., “Ionic Colloidal Crystals of Oppositely Charged Particles,” Nature, Vol. 437, pp.235-240, 2005.

16. Liu, H., Zhang,W. X., Zhang, M., and Tsang, K. F., ” Low profile spiral antenna with PBG substrate, “ Electron. Lett., Vol. 36, pp. 779-780, 2000.

17. Leung, W. Y., Biswas, R., Cheng, S., Sigalas , M. M., McCalmont J. S., Tuttle, G.. and K. M. Ho, “Slot antennas on photonic band gap crystals,” IEEE Trans. Antennas Propagat., Vol. 45, pp. 1569–1570, 1997.

18. Haiwen Liu, Student Member, “Harmonic suppression with photonic bandgap and defected ground structure for a microstrip patch antenna,” IEEE Microwave and Wireless Components Letters, Vol. 15, 2, pp. 55-56, 2005.

19. Mailloux, R. F., “Phased Array Theory and Technology,” Proc. IEEE, Vol. 70, pp. 246–291, 1982.

20. Qiu, M., and He, S., “High directivity patch antenna with both photonic bandgap substrate and photonic bangap cover,” Microw. Opt. Technol. Lett., Vol. 30, pp. 41–44, 2001.

21. Qian, Y., Coccioli, R., Sievenpiper, D., Radisic, V., Yablonovitch, E. and Itoh, T. “A microstrip patch antenna using novel photonic band-gap structures, “ Microwave J., Vol. 42, pp. 66-76, 1999.

22. Rasa, F.X., Cho, K.S., Murray, C.B., and Brien, S.O., “Three-dimensional Binary Superlattices of Magnetic Nanocrystals and Semiconductor Quantum Dots,” Nature, Vol. 423, pp. 968-971, 2003.

23. Radisic,V., Qian, Y., and Itoh, T., “Broadband power amplifier integrated with slot antenna and novel harmonic tuning structure,” IEEE MTT-S Dig., pp. 1895–1898, 1998.

24. Shum, K. M., Xue Q., “Chan Ch. H., Novel Microstrip Ring Hybrid Incorporation a PBG Cell,” IEEE Microwave Wireless Compo. Lett.,Vol. 6, pp. 258-260, 2001.

25. Sung, Y. J., Kim, Y. S., ”An Improved Design of Microstrip Patch Antennas Using Photonic Bandgap Structure.,” IEEE Transactions on Antennas and Propagation, Vol. 53, pp. 1799-1804, 2005.

26. Thèvenot, M., Reineix, A., and Jecko, B., “FDTD to analyze complex PBG structures in the reciprocal space,” Microwave Opt. Tech. Lett., Vol. 21, pp. 2115–2122, 1999.

27. Thèvenot, M., Cheype, C., Reineix, A., and Jecko, B., “Directive photonic band gap antennas,” IEEE Trans. Microwave Theory Tech., Vol. 47, pp.2115–2122, 1999.

28. Taflove, Allen., Hagness, Susan C. 2005, ”Computational electrodynamics: the finite-difference time-domain method.,” Artech House publication.

29. Woonphil Kim, Bomson Lee, “Modelling and design of 2D UC-PBG structure using transmission line theory,” IEEE Antennas and Propagation Society International Symposium, Vol. 3, pp. 780-783, 2002.

30. Yang, H. Y., Alexopoulos, N. G., “Gain enhancement method for printed circuit antennas through multiple superstrates,” IEEE Trans. Antennas Propagat., Vol. 35, pp. 860–863, 1987.

31. Yang,Y. D., Alexopoulos, N. G., Yablonovitch, E., “Photonic-band gap materials for high gain printed circuit antennas,” IEEE Trans. Anetennas Propagat., Vol. 45, pp. 185–187, 1997.

32. Yasushi Horri, Makoto Tsutsumi., “Suppression of the Harmonic Radiation from the PBG Microstrip Antenna,” IEEE MTT-S, Vol. 12, pp. 724-727, 1999.

33. Zhang, X., Fang, J., Mei, K.K., “Calculations of the dispersive characteristics of microstrips by the timedomain finitte difference method”, IEEE Trans. Microwave Theory Tech.,Vol. 7, pp. 263-267, 1988.

34. Zaglankis C.D., Seeds., A.J., “The Use of Optical Amplifiers for Signal Distributionn Optically Controlled Phased Array Antennas,” Journal on Communications, Vol. 9 , pp. 6-13, 1992.

35. 陳志榮, “流體中奈米微粒自結合傳遞與釋放技術之研發,” 國立成功大學機械工程系碩士論文, 2004.

36. 田光泰, “超晶格薄膜LED理論模型與發光效率之研究,” 國立成功大學機械工程系碩士論文, 2007.

37. 陳建中, “光晶高曲度波導系統之研發與應用,” 國立成功大學機械工程系碩士論文, 2008.

38. 洪連輝, 劉立基, 魏榮君, “固態物理學導論,” 高立圖書出版社, 1996.

39. 黎正中, 陳源樹, “實驗設計與分析,” 高立圖書出版社, 1996.

40. 張有義, “膠體及介面化學入門,” 高立圖書有限公司, 1997.

41. 欒丕綱, 陳啟昌, “光子晶體-從蝴蝶翅膀到奈米光子學,” 五南圖書出版股份有限公司, 2005.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊