跳到主要內容

臺灣博碩士論文加值系統

(3.236.68.118) 您好!臺灣時間:2021/08/04 19:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王漢培
研究生(外文):Han-Pei Wang
論文名稱:電漿輔助脈衝雷射沉積法生成類鑽碳膜之研究
論文名稱(外文):The formation of diamond-like carbon (DLC) film in plasma assisted pulsed laser deposition method.
指導教授:林震銘
指導教授(外文):Jehnming Lin
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:129
中文關鍵詞:脈衝雷射沉積法電漿火炬類鑽碳
外文關鍵詞:Diamond-like carbonPlasma torchPulsed laser deposition
相關次數:
  • 被引用被引用:0
  • 點閱點閱:84
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用電漿輔助脈衝雷射沉積法的方式,在大氣環境下進行類鑽碳膜的生成。有別於一般脈衝雷射沉積法於真空環境下生成類鑽碳膜,本研究在製程中加入高溫電漿的輔助,藉由電漿火炬的高溫效應增加製程中碳粒子的動能,促進sp3鍵結的形成,於大氣環境下生成類鑽碳膜,並利用數值模擬及實驗的方式分別觀察製程中不同的電漿參數對電漿流場以及鍍膜結構所造成之影響。
在數值模擬方面,利用計算流體力學軟體FLUENT模擬高溫電弧電漿火炬,藉由MHD模組的計算求得電漿中的電磁場強度,再根據計算結果代入統御方程式中進行電漿速度場及溫度場的計算,並探討不同電流及入口氣壓對高溫電漿所造成之影響。實驗方面利用自行組裝的實驗裝置在大氣環境下進行鍍膜製程,以拉曼光譜檢測薄膜結構,並利用刮痕試驗量測薄膜的附著性,藉由實驗結果分析製程中電漿火炬以及各種實驗參數對鍍膜結構所造成的變化。由拉曼光譜分析結果得知,在電漿火炬的輔助下,D-Band和G-Band之積分強度比(Id/Ig)可降低至0.513,有助於類鑽碳結構的形成,¬由刮痕試驗結果得知鍍膜可承受的臨界荷重約為19 Newton;且不同的電流及入口氣壓下所產生的電漿特性會使其結構產生變化,將實驗所觀察到的趨勢、現象以及理論分析結果進行統整後,可作為後續發展之研究基礎。
In this study a technique of deposition by plasma assisted pulsed laser in atmospheric pressure is proposed. The formation of diamond-like carbon (DLC) film has been investigated. This approach is made to accelerate the ablated carbon particles by a high temperature plasma torch, then the kinetic energy of the carbon particle can be increased to form the sp3 atomic structure of the carbon by the plasma flow.

The influences of the plasma flow have been examined by numerical analysis and experimental observation. In the numerical analysis, the electromagnetic fields and the distribution of velocity and temperature on plasma flow have been solved by a set of magnetohydrodynamics (MHD) equations with the software FLUENT. The effects on the plasma flow at various parameters, such as electric current and inlet pressure, are discussed in this study. The plasma assisted pulsed laser deposition method was used to deposit DLC film on the steel substrate at atmospheric pressure with the argon gas flow in experiment. According to the results of the carbon film inspected by the Raman spectroscopy, it reveals that the intensity ratio of the D-band to G-band (Id/Ig) of the carbon film can be reduce to 0.513 by the implementation of plasma flow, therefore the DLC film was solidly formed. The adhesive strength of the DLC film was characterized by the scratch test, it can be seen that the critical load of the film is about 19 N, which is acceptable in comparison with other approaches.
摘要………………………………………………………………… I
Abstract…………………………………………………………… II
誌謝………………………………………………………………… III
目錄………………………………………………………………… IV
表目錄……………………………………………………………… IX
圖目錄……………………………………………………………… XI
符號說明…………………………………………………………… XVII

第一章 緒論………………………………………………………1
1-1 研究目的…………………………………………………1
1-2 文獻回顧 ……………………………………………… 3
1-2.1 脈衝雷射沉積法生成類鑽碳膜…………………… 3
1-2.2 電弧電漿沉積法生成類鑽碳膜…………………… 5
1-2.3 電漿輔助脈衝雷射沉積法生成類鑽碳膜 ………… 8
1-2.4 電漿流場的模擬計算……………………………… 9
1-3 本文架構……………………………………………… 12

第二章 製程原理簡介………………………………………… 14
2-1 類鑽碳簡介…………………………………………… 14
2-1.1 碳材料的內部結構………………………………… 14
2-1.2 類鑽碳的形成機制………………………………… 17
2-1.3 拉曼光譜原理……………………………………… 19
2-2 脈衝雷射沉積法之製程原理 ………………………… 21
2-3 電漿原理簡介………………………………………… 23
2-3.1 電漿的形成機制……………………………………… 25
2-3.2 電漿的溫度特性……………………………………… 27
2-3.3 電磁理論……………………………………………… 28

第三章 數值分析結果………………………………………… 33
3-1 電弧電漿火炬之流場分析…………………………… 33
3-1.1 電漿火炬計算模型………………………………… 35
3-1.2 模擬假設條件……………………………………… 36
3-1.3 統御方程式………………………………………… 37
3-1.4 物理模型及邊界條件設定………………………… 41
3-2 模擬結果……………………………………………… 45
3-2.1 不同電流條件對電漿流場之影響………………… 45
3-2.1.1 電漿火炬電磁場分布情形………………………… 45
3-2.1.2 電漿火炬溫度場分布情形………………………… 51
3-2.1.3 電漿火炬速度場分布情形………………………… 56
3-2.2 不同入口壓力對電漿流場之影響………………… 61
3-2.2.1 電漿火炬電磁場分布情形………………………… 61
3-2.2.2 電漿火炬溫度場分布情形………………………… 63
3-2.2.3 電漿火炬速度場分布情形………………………… 66
3-3 結果與討論…………………………………………… 69

第四章 實驗…………………………………………………… 72
4-1 實驗設備及配置……………………………………… 72
4-2 拉曼光譜分析類鑽碳膜……………………………… 75
4-3 實驗流程……………………………………………… 77
4-4 實驗條件及步驟……………………………………… 78
4-5 脈衝雷射沉積法……………………………………… 79
4-5.1 實驗結果…………………………………………… 80
4-5.1.1 鍍膜之表面形貌…………………………………… 80
4-5.1.2 拉曼光譜分析結果………………………………… 80
4-6 電漿輔助脈衝雷射沉積法…………………………… 83
4-6.1 實驗結果…………………………………………… 83
4-6.1.1 鍍膜之表面形貌…………………………………… 83
4-6.1.2 拉曼光譜分析結果………………………………… 84
4-7 製程中不同電流條件對鍍膜結構之影響…………… 87
4-7.1 實驗結果…………………………………………… 87
4-7.1.1 鍍膜之表面形貌…………………………………… 87
4-7.1.2 拉曼光譜分析結果………………………………… 88
4-8 製程中不同氣壓條件對鍍膜結構之影響…………… 91
4-8.1 實驗結果…………………………………………… 91
4-8.1.1 拉曼光譜分析結果………………………………… 91
4-9 膜厚及附著力量測…………………………………… 94
4-10 結果與討論 ………………………………………… 97

第五章 綜合討論與建議……………………………………… 99
5-1 綜合討論……………………………………………… 99
5-2 相關建議與未來發展………………………………… 103

參考文獻…………………………………………………………… 105
附錄A 電漿流場模擬結果與文獻之比較……………………… 109
附錄B 靶材之拉曼分析結果……………………………………… 115
附錄C 刮痕試驗結果圖…………………………………………… 116
附錄D 刮痕試驗之元素分析結果………………………………… 119
[1]Falcao Eduardo H.L. and Wudl F., “Carbon allotropes: beyond graphite and diamond”, Journal of Chemical Technology and Biotechnology, Vol. 82, No. 6, p. 524-531, 2007.
[2]Murray P. T., “Pulsed laser deposition of carbon films: dependence of film properties on laser wavelength”, Journal of Electronic Material, Vol. 23, No. 23, p. 855-859, 1994.
[3]Sato T., Furuno S., Iguchi S. and Hanabusa M., “Deposition of diamond-like carbon films by pulsed-laser evaporation”, Jap. J. Appl. Phys. Vol. 26, p. L1487-L1488, 1987.
[4]Wagal S.S., Juengerman E.M. and Collins C.B., “Diamond-like carbon films prepared with a laser ion beam”, Collins. Appl. Phys. Lett. Vol. 53, No. 3, p. 187-188, 1988.
[5]Merkulov V. I., Lowndes D. H., Jellison G. E., Jr., Puretzky A. A. and Geohegan D. B., “Structure and optical properties of amorphous diamond films prepared by ArF laser ablation as a function of carbon ion kinetic energy”, Appl. Phys. Lett. Vol. 73, No. 18, p. 2591-2593, 1998.
[6]Kononeko T. V., Konov V. I., Lubnin E. N. and Dausinger F., “Pulsed laser deposition of hard carbon coatings at atmospheric pressure”, Quantum Electronics, Vol. 33, No. 3, p. 189-191, 2003.
[7]Kononenko T.V., Loubnin E.N., Dausinger F. and Breitling D., “Pulsed laser deposition of hard coatings in atmospheric air”, Applied Physics A: Materials Science and Processing, Vol. 79, No. 4-6, p. 931-936, 2004.
[8]Coll B. F. and Chhowalla M., “Amorphous diamond film by enhanced arc deposition”, Surface & Coatings Technology, Vol. 79, No. 1-3, p. 76-86, 1996.
[9]Han H., Ryan F. and McClure M., “Ultra-thin tetrahedral amorphous carbon film as slider overcoat for high areal density magnetic recording”, Surface and Coatings Technology, Vol. 120-121, p. 579 - 584, 1999.
[10]Yan P., Yang S., Li B., Ren Y. and Chen X., “Deposition of diamond-like carbon films on an iron substrate by a pulsed high-density plasma beam at room temperature”, Materials Chemistry and Physics, Vol. 45, No. 2, p. 167-170, 1996.
[11]Leng Y.X., Chen J.Y., Yang P., Sun H., Wan G.J. and Huang N., “Mechanical properties and platelet adhesion behavior of diamond-like carbon films synthesized by pulsed vacuum arc plasma deposition”, Surface Science, Vol. 531, No. 2, p. 177-184, 2003.
[12]Vasilets V.N., Hirose A., Yang Q., Singh A., Sammynaiken R., Foursa M. and Shulga Y.M., “Characterization of doped diamond-like carbon films deposited by hot wire plasma sputtering of graphite”, Applied Physics A: Materials Science and Processing, vol. 79, No. 8, p. 2079-2084, 2004.
[13]Liou Y., Weimer R., Knight D. and Messier R., “Effect of oxygen in diamond deposition at low substrate temperatures”, Applied Physics Letters, Vol.56, No. 5, p.437-439, 1990.
[14]Ono T., Suda Y., Akazawa M., Sakai Y. and Suzuki K., “Effects of oxygen and substrate temperature on properties of amorphous carbon films fabricated by plasma-assisted pulsed laser deposition method”, Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, Vol. 41, No. 7A, p. 4651-4654, 2002.
[15]Suda Y., Ono T., Akazawa M., Sakai Y., Tsujino J. and Homma N., “Preparation of carbon nanoparticles by plasma-assisted pulsed laser deposition method - size and binding energy dependence on ambient gas pressure and plasma condition”, Thin Solid Films, Vol. 415, No. 1-2, p. 15-20, 2002.
[16]Itoh M., Suda Y., Bratescu M.A. and Sakai Y., “Plasma-assisted pulsed laser deposition of carbon films: effect of oxygen plasma on amorphous carbon film etching”, Thin Solid Films, Vol. 506-507, p. 96-100, 2006.
[17]Mckelliget J., Szekely J., Vardelle M. and Fauchais P., “Temperature and velocity fields in a gas stream exiting a plasma torch. A mathematical model and its experimental verification”, Plasma Chemistry and Plasma Processing, Vol. 2, No. 3, p. 317-332, 1982.
[18]Dilawari A. H. and Szekely J., “Some perspectives on the modeling of plasma jets”, Plasma Chemistry and Plasma Processing, Vol.7, No. 3, p. 317-339, 1987.
[19]Lee Y. C. and Pfender E., “Particle dynamics and particle heat and mass transfer in thermal plasmas. Part III. Thermal plasma jet reactors and multiparticle injection”, Plasma Chemistry and Plasma Processing, Vol. 7, No. 1, p. 1-27, 1987.
[20]Scott D. A., Kovitya P. and Haddad G. N., “Temperatures in the plume of a dc plasma torch”, J. Appl. Phys., Vol. 66, No. 11, p. 5232-5239, 1989.
[21]Westhoff R. and Szekely J., “A model of fluid, heat flow, and electro-magnetic phenomena in a non-transferred arc plasma torch”, Journal of Applied Physics, Vol. 70, No. 7, p. 3455-3466, 1991.
[22]Paik S., Huang P.C., Heberlein J. and Pfender E., “Determination of the arc-root position in a DC plasma torch”, Plasma Chemistry and Plasma Processing, Vol. 13, No. 3, p. 379-397, 1993.
[23]Sato T. , Solonenko O. P. and Nishiyama H., “Numerical simulation of a particle-laden plasma flow in a complex configuration under an electromagnetic field”, International Journal of Multiphase Flow, Vol. 29, No. 3, p. 461-474, 2003.
[24]Nishiyama H., Kuzuhara M., Solonenko O.P. and Kamiyama S., “Numerical modeling of an impinging and compressible dusted plasma jet controlled by a magnetic field”, Plasma Chemistry and Plasma Processing, Vol. 19, No. 3, p. 363-381, 1999.
[25]Zagorski A.V. and Stadelmaier F., “Full-scale modelling of a thermal spray process”, Surface and Coatings Technology, Vol. 146-147, p. 162-167, 2001.
[26]Wilden J., Frank H. and Bergmann J. P., “Process and microstructure simulation in thermal spraying”, Surface and Coatings Technology, Vol. 201, No. 5, p. 1962-1968, 2006.
[27]Zhang T., Bao Y., Gawne D.T., Liu B. and Karwattzki J., “Computer model to simulate the random behaviour of particles in a thermal-spray jet”, Surface and Coatings Technology, Vol. 201, No. 6, p. 3552-3563, 2006.
[28]柯賢文,表面與薄膜處理技術,全華科技,2004。
[29]Robertson J., “Diamond-like amorphous carbon”, Materials Science and Engineering: R: Reports: A Review Journal, Vol. 37, No. 4-6, p. 129-281, 2002.
[30]鈴木秀人、池永 勝,DLC成膜技術,全華科技,2005。
[31]Pierson H. O., “Handbook of carbon, graphite, diamond and fullerenes – properties, processing and applications”, Noyes publications,1993.
[32]蘇青森,儀器學,五南圖書出版股份有限公司,2002。
[33]陳陵援,儀器分析,三民書局,1982。
[34]Voevodin A.A. and Donley M.S., “Preparation of amorphous diamond-like carbon by pulsed laser deposition : a critical review”, Surface and Coating Technology, Vol. 82, p. 199-213, 1996.
[35]Wei Q. and Narayan J., “Superhard diamondlike carbon: preparation, theory, and properties”, International Materials Reviews, Vol. 45, No. 4, p. 133-164, 2000.
[36]陳肇英,雷射與電漿混合法製備奈米金屬微粒之研究,國立成功大學機械工程研究所碩士論文,民國95年。
[37]Roth J. R., “Industrial plasma engineering – volume 1: principles”, Institude of physics publishing, 1995.
[38]張家豪,魏鴻文,翁政輝,柳克強,李安平,寇崇善,吳敏文,曾錦清,蔡文發,鄭國川,電漿源原理與應用之介紹,物理雙月刊,28卷2期,2006年4月。
[39]FLUENT 6.2 User Guide, Fluent Inc, 2003.
[40]Cheng D. K., “2nd Field and wave electromagnetic”, Addison-wesley publishing company, 1989.
[41]Toh T., Tanaka J., Maruki Y., Yamamoto T. and Takeda T., “Magnetohydrodynamic simulation of DC arc plasma under AC magnetic field”, ISIJ International, Vol. 45, No. 7, p. 947-953, 2005.
[42]Li H.P., Pfender E. and Chen X., “Application of Steenbeck’s minimum principle for three-dimensional modeling of DC arc plasma torches”, J. Phys. D: Appl. Phys., Vol. 36, p 1084-1096, 2003.
[43]Shiao J. and Hoffman R. W., “Study of diamond-like and nitrogen-containing diamond-like carbon using laser raman spectroscopy”, Thin Solid Films, Vol. 283, p. 145-150, 1996.
[44]Beeman D., Silverman J., Lynds R. and Anderson M.R.,” Modeling studies of amorphous carbon”, Phys. Rev. B, Vol. 30, No. 2, p. 870-875, 1984.
[45]Lee J.K., Smallen M., Enguero J., Lee H.J. and Chao A., “The effect of chemical and surface properties of hydrogenated carbon overcoats on the tribological performance of rigid magnetic disks”, IEEE Trans. Magn., Vol. 29, No. 1, p. 276-281, 1993.
[46]Fung M. K., Chan W. C., Gao Z. Q., Bello I., Lee C. S. and Lee S. T., “Effect of nitrogen incorporation into diamond-like carbon film by ECR-CVD”, Diamond and Related Materials, Vol. 8, Issues 2-5, p. 472-476, 1999.
[47]Ferrari A.C. and Robertson J., “Interpretation of Raman spectra of disordered and amorphous carbon”, Phys. Rev. B, Vol. 61, No. 20, p. 14095-14107, 2000.
[48]Bull S. J., “Failure modes in scratch adhesion testing”, Surface and Coatings Technology, Vol. 50, Issue 1, p. 25-32, 1991.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top