跳到主要內容

臺灣博碩士論文加值系統

(3.237.38.244) 您好!臺灣時間:2021/07/24 16:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:簡嘉宏
研究生(外文):Chia-hung Chien
論文名稱:計算流體力學應用於輥輪塗佈及高速主軸冷卻水套之熱流分析
論文名稱(外文):Application of the CFD method to Thin Liquid Film Flow between Two Forward and Reversed Rollers and Thermal-Hydraulic Analysis of Water Cooling Channel for a High Speed Spindle
指導教授:張錦裕張錦裕引用關係
指導教授(外文):Jiin-yuh Jang
學位類別:博士
校院名稱:國立成功大學
系所名稱:機械工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:146
中文關鍵詞:輥輪塗佈CFD馬達內藏式高速主軸熱流分析
外文關鍵詞:high speed spindleCFDcoating
相關次數:
  • 被引用被引用:0
  • 點閱點閱:287
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文分別以理論及實驗方法研究輥輪塗佈過程中塗料在輥輪間流動行為及高速主軸水套內冷卻水對主軸水套之熱傳影響。在輥輪塗佈流場分析中,本文利用三維那維-史都克(Navier-Stokes)方程式描述非牛頓流體塗料在輥輪轉動間之流體運動現象,考量塗料與空氣間之相互作用深入求解塗料塗料流經帶漆輥(pickup-roll)、塗覆輥(applicator-roll)與支撐輥(panel-roll)三輥輪間時之流動行為。在順輥塗佈過程中,針對當下輥輪速度為30 m/min時,藉由改上輥輪之轉速來探討塗料之厚度、波紋、流場壓力等之變化情形。由結果可發現當上輥輪速度由速度30 m/min增加至120 m/min時,上輥輪膜厚將由72 μm增至121 μm,而下輥輪膜厚由72 μm降至28 μm。而在壓力方面:當上輥輪轉速提高時,塗料內之最高壓力亦隨之提高,塗料之最高壓力分別為467與1294Pa。而塗料之波紋則會隨著平均速度提升時,塗膜上之波紋數亦增加,且波紋之振幅也將隨速度增加而增加。而從不同塗料n值中可發現,當提高時n值時(n=0.95、1.05與1.15),上下輥輪之塗膜厚度將變薄(上輥輪之塗膜分別為148、121和11 μm,下輥輪之塗膜則分別為35、28和24 μm)。塗料內之最高壓力將隨n值提升時而提高。
在逆輥塗佈分析中,針對固定下輥輪速度為120 m/min,改變上輥輪速度為60、120和240 m/min來探討塗膜變化情形。由於流入輥輪間之塗料保持固定,因此在上輥輪速度提高後,上輥輪上所產生之塗膜厚度將變薄(上輥輪膜厚由167 μm減至41 μm),而轉速提升也將導致下輥輪塗膜厚度變薄(下輥輪膜厚由16.1 μm降至12.1 μm)。在壓力方面,由結果可看出流場內之最大負壓點產生位置亦與洩漏塗膜(leakage film)跟上輥輪間之分離點產生位置有關,當分離點產生在其喉部之前(左),塗料壓力內最高正壓將未如之前般急速上升。但在當分離點產生靠近喉部附近時,其壓力下降之幅度皆大幅增加。而由不同的n值模擬中可發現,當塗料n值提高時(n=0.95、1.05與1.15),此時衝過兩輥輪間喉部之洩漏塗膜將變薄(隨n值增加厚度由17.2μm減少為、16.1與14.8μm)。而上輥輪塗膜上之塗膜厚度則將受黏度改變影響而變厚(上輥輪膜厚分別為153、167和176μm)。
而在內藏式馬達高速主軸之傳流分析方面,本文亦利用實驗與理論數值方法探討一內含雙螺旋水道之高速主軸與冷卻水間之傳導現象。在理論中考慮流體與固體間的熱傳遞能量平衡求解流體在主軸水道內之流動與熱傳行為。針對可能改變整體之溫度分佈的因素做一理論模擬分析研究。從不同的熱源中發現,當冷卻液流量為0.8 L/min時,提高熱源由60W增為120與240W時,主軸上所有之高溫將集中於主軸中水套與馬達接觸之處。當熱源為120W時,改變不同之冷卻流量為0.4、0.8和1.2L/min時,在此熱源下只要冷卻液流量為0.8 L/min時,已能有效的將主軸溫度提升抑止。而從實驗中所量測之主軸溫度變化將可證明數值模擬結果有相當高之精確性。此外由不同冷卻水流量所得之結果,可推出一於冷卻水流入雷諾數在5 x 10 4 < Re < 1.5 x10 5範圍內,適用雙螺旋水道中之冷卻水紐塞數經驗式:Nu =4.63 Re 0.184,做為未來高速主軸冷卻系統設計上之重要依據。
In this study the three dimensional non-Newtonian flow in forward and reversed roll coating process had been studied by both experimental and numerical simulations. The non-Newtonian behavior of the coating fluid had also been accounted using Ostwald’s power law model with power index values of n = 0.95, 1.05 and 1.15. Experiments were conducted on three roll coating system of pick up roll , applicator roll and panel roll with non-Newtonian coating fluid. In the forward and reversed coating, the gap between two rollers was maintained at 100 and 25 μm, respectively. The coating film thickness were measured during the experiments. In the forward coating process, the speed ratio was the most important factor which affects the coating film thickness. The results shown that the distance from nip point to film splitting point and the film thickness on the application roll increases with increasing roll speed ratio, but the film thickness on pick up roll decreases with increasing roll speed ratio. Comparison of experimental results and numerical simulation results shown that the numerical computations over predict the coating film thickness and error between the experimental and numerical results being 5-10%. In the reversed coating process, it was found that as the speed ratio was increased, the transferred film thickness was reduced, while the leakage film thickness was increased. As the power index was increased, the transferred film thickness was increased, while the leakage film thickness was decreased and the film splitting point moves further away from the gap centre between two rolls. The pressure distribution increases with rising the power-law index. It was also shown that dilatant fluid (n>1) exhibits ribbing instability with more waviness on the film surface.

In addition, this study also used numerically and experimentally analyze the three-dimensional fluid motion and temperature distributions in a built-in motorized high-speed spindle with a helical water cooling channel. The effects of different heat sources and cooling water flow rate were examined in detail. The results indicated that almost all the hot spots were concentrated near the center of the spindle axis, and temperature increase can be significantly reduced with helical water-cooling. The predicted temperature distribution of the spindle housing was in good agreement with the result obtained from experiments. It was also shown that the heat transfer coefficient h varies with V 0.184. Regression analysis was conducted to obtain Nu =4.63 Re 0.184, which can be applied for 5 x 10 4 < Re < 1.5 x 105 .
中文摘要................................................Ⅰ
英文摘要................................................Ⅲ
致謝....................................................Ⅴ
目錄....................................................Ⅵ
表目錄..................................................Ⅷ
圖目錄..................................................Ⅸ
符號說明...............................................XIV
第一章 緒論...............................................1
1.1前言...................................................1
1.2文獻回顧...............................................4
1.3 研究目的.............................................16
第二章 理論分析..........................................22
2.1輥輪塗佈流場理論分析..................................22
2.2 高速主軸水套熱流理論分析.............................31
第三章 數值方法..........................................39
3.1 數值方法.............................................39
3.2解題流程..............................................47
3.3建立格點..............................................47
3.4格點測試..............................................49
第四章 實驗設備與方法....................................55
4.1輥輪塗佈實驗..........................................55
4.2 高速主軸熱傳實驗量測.................................72
第五章 結果與討論........................................80
5.1 輥輪塗佈流場分析.....................................80
5.2 高速主軸熱流分析....................................118
第六章 結論.............................................137
6.1輥輪塗佈流場分析.....................................137
6.2高速主軸熱流分析.....................................139
參考文獻................................................141
自述....................................................146
1.Salomon, C. J., 1931, “Process for machining metal of similar acting materials when being worked by cutting tools”, German patent, No. 523594.
2.Talor, G. I., 1963, “Cavitation of a Viscous Fluid in a Narrow Passage”, J. Fluid Mech., Vol.16, pp.595-619.
3.Coyle, D. J., Macosko, C. W. and Scriven, L. E., 1990, “Stability of Symmetric Film Splitting Between Counter-rotating Cylinders”, J. Fluid Mechanics, Vol.216, pp.437-458
4.Benkreira, H., Edwards, M. F. and Wilkinson, W. L., 1981, “A Semi-Empirical Model of The Forward Roll Coating Flow of Newtonian Fluids”, Chemical Engineering Science, Vol.36, pp.423-427
5.Savage, M. D., 1982, “Mathematical Models for Coating Processes”, J. Fluid Mech., Vol.117, pp.443-455
6.Coyle, D. J., Macosko, C. W. and Scriven, L. E., 1986, “Film-Splitting Flows in Forward Roll Coating”, J. Fluid Mech., Vol.171, pp.183-207.
7.Coyle, D. J., 1997, Knife and Roll Coating, Chap. 12 in Liquid Film Coating, ed. by Kistle, S. F. and Schweizer, P. M., Chapman & Hall, London, UK.
8.Yih, C. S., 1960, “Instability of a Rotating Liquid Film with a Free Surface”, Proc. Roy. Soc. Section A., Vol.258, pp.63-89.
9.Pearson, J. R. A., 1959, “The Instability of Uniform Viscous Flow under Rollers and Spreaders”, J. Fluid Mechanics, Vol.7, pp.481-500.
10.Orchard, S. E., 1962, “On Surface Levelling in Viscous Liquids and Gels”, Applied Science Research, Section A, Vol.11, pp.451-464.
11.Kheshgi, H. S., 1989, “Profile equations for film flows at moderate Reynolds numbers”, AICHE J. Vol.35, pp.1719-1727.
12.Pitts, E. and Greiller, J., 1961, “The Flow of Thin Liquid Films Between Rollers”, J. Fluid Mechanics, Vol.11, pp.33-50.
13.Mill, C. C. and South, G. R., 1967, “Formation of Ribs on Rotating Rollers”, J. Fluid Mechanics, Vol.28, pp.523-529.
14.Coyle, D. J., 1984, “The Fluid Mechanics of Roll Coating: Steady flows, Stability and Rheology”, Ph.D. thesis, University of Minnesota, Minneapolis, MN.
15.Savage, M. D., 1984, “Mathematical model for the onset of ribbing”, AIChE J., Vol.30, pp.999–1002.
16.Savage, M. D., 1992, “Meniscus Insatbility and Ribbing”, Industrial Coating Research, Vol.2, pp.47-58.
17.Hasegawa, T. and Sorimachi, K., 1993, “Wavelength and Depth of Ribbing in Roll Coating and Its Elimination”, AICHE J., Vol.39, No.6, pp.935-945.
18.Carvalho, M. S. and Scriven, L. E., 1999, “Three Dimensional stability Analysis of Free Surface Flows: Application to Forward deformable Roll Coating”, Journal of Computational Physics, vol.151, pp.534-562.
19.Carvalho, M. S., Anderson T. J., Scriven L. E., 1994, “Ribbing instability In forward deformable roll coating”, Proceedings of the TAPPI Coating Conference, pp. 99–104.
20.Gurfinkel Castillo, M. E. and Patera, A. T., 1997, “Three-Dimensional Ribbing Instability in Symmetric Forward Roll film Coating Process”, J. Fluid Mechanics, Vol.355, pp.323-359.
21.Varela, L. F., Pauchard, L., Rosen, M., Rabaud, M., 2002, “Non-newtonian Effects on Ribbing Instability Threshold”, J. Non-newtonian Fluid Mech., Vol.103, pp. 123-139.
22.Zevallos, G. A., Carvalaho, M.S., Pasquali, M.. 2005, “Forward Roll Coating Flows of Viscoelastic Liquids”, J. Non-newtonian Fluid Mech., Vol.130, pp. 96-130
23.Coyle, D. J., Macosko, C. W. and Scriven, L. E., 1990, “A Simple Model of Reverse Roll Coating”, Ind. Eng. Chem. Res., Vol.29, pp.1416-1419.
24.Coyle, D. J., Macosko, C. W. and Scriven, L. E., 1990, “The Fluid Dynamics of Reverse Roll Coating”, AICHE J., Vol.36, No.2, pp.161-174.
25.Yue, H. and Shimon, H., 1999, “Reverse Roll Coating Flow”, Int. J. Numer. Fluids, Vol.30, pp.635-652.
26.Benkreira, H., 2002, “Experimental Study of Dynamic Wetting in Reverse-Roll Coating”, AICHE J., Vol.48, No.2, pp.221-226.
27.Chandio, M.S. and Webster, M.F., 2001, “Numerical Simulation for Reverse Roller-Coating with Free-Surface”, ECCOMAS proceedings, Computational Fluid Dynamics Conference, 4-7 Sept., Swansea, UK.
28.Chandio, M.S. and Webster, M.F., 2002, “Numerical Simulation for Viscous Free-Surface flows for Reverse Roller-Coating”, International Journal of Numerical Methods for Heat and Fluid Flow, Vol.12, No.4, pp.434-457.
29.Chandio, M.S. and Webster, M.F., 2002, “Numerical Study of Transient Instabilities in Reverse Roller-Coating Flows”, International Journal of Numerical Methods for Heat and Fluid Flow, Vol.12, No.4, pp.375-403.
30.Bossmanns, B. and Tu, J. F., 2001, “A Power Flow Model for High Speed Motorized Spindles- heat Generation Characterization ”, Journal of Manufacture Science and Engineering, Vol. 123, pp.494-505.
31.Ohishi, S. and Matsuzaki, Y., 2001, “Experimental Investigation of Air Spindle Unit Thermal Characteristics” , Journal of the International Precision Engineering and Nanotechnology, Vol. 26, pp.49-57.
32.Bossmanns, B. and Tu, J. F., 1999, “ A Thermal Model for High Speed Mmotorized Spindles ”, International Journal of Machine Tools and Manufacture, Vol.39, pp.1345-1366
33.Choi, J. K. and Lee, D. G., 1998, “ Thermal Characteristics of the Spindle Bearing System with a Gear Located on the Bearing Span ”, International Journal of Machine Tools and Manufacture, Vol. 38, pp.1017-1030.
34.Kreith, F., 1963, “ Convection Heat Transfer and Flow Phenomena of Rotating Spheres ”, International Journal of Heat Mass Transfer, Vol.6, pp.881.
35.Zhao, H., Yang, J. and Shen, J., 2006, “Simulation of Thermal Behavior of a CNC Mechine Tool Spindle”, International Journal of Machine Tools and Manufacture, Vol. 47, pp.1003-1010.
36.Harris, T. A., 1991, “Rolling Bearing Analysis”, Wiley, New York, pp.540-560.
37.Lu, Y., Yao, Y. X. and Hong, R. H., 2008, “Finite Element Analysis of Thermal Characteristics of High-Speed Motorized Spindle”, Applied Mechanics and Materials, Vol. 10-12, pp.258-262.
38.Burnett, D. S., 1987, “ Finite Element Analysis from Concepts to Applications”, Addison-Wesley Publishing Company
39.Kim, S. M. and Lee, S. K., 2001, “Prediction of Thermo-Elastic Behavior in a Spindle-Bearing System Considering Bearing Surrounding”, International Journal of Machine Tools and Manufacture, Vol. 41, pp.809-831.
40.Chen, J. S. and Hsu, W. Y., 2003, “Characterizations and Models for The Thermal Growth of a Motorized High Speed Spindle”, International Journal of Machine Tools and Manufacture, Vol. 43, pp.1163-1170.
41.Jang, J. Y. and Chien, C. H., 2002, “3-D Heat Transfer Analysis of a Built-In Motorized High Speed Spindle With Helical Cooling Channel”, 1st International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, South Africa, April 4-10, pp.1019-1024.
42.Abadzic, E. E., 1974, “Heat Transfer on Coil Tubular Matrix”, ASME Winter Annual Meeting, ASME paper 74-WA/HT-64.
43.Takeuti, Y. and Tanigawa, Y., 1978, “ A New Numerical Method for Transient Thermal Stress Problem”, International Journal for Numerical Methods in Engineering, Vol 14, pp.987-1000
44.Zienkiewicz O. C. and Cheung, Y. K., 1965, “Finite Element in The Solution of Field Problem”, The Engineer, Vol. 220, pp.507-510
45.Zhou, J. G. and Goodwill, I. M., 1997, “A Finite Volume for Steady State 2D Shallow Water Flows”, International Journal of Numerical Methods in Engineering, Vol. 7, pp4-23.
46.CFD-ACE(U),CFD Research Corporation, Alabama, USA, 2003
47.Launder, B. E. and Spalding, A. D., 1972, Mathematical Models of Turbulence, pp. 90-100, Academic, London.
48.Chen, Y. S., Kim, S. W., 1987, “Computation of Turbulent Flows Using an Extended Turbulence Closure Model”, NASA CR-179204.
49.Wang, T. S., Chen, Y. S., 1993, “Unified Navier-Stokes Flow Field and Performance Analysis of Liquid Rocket Engines”, AIAA Journal, Vol. 9, No. 5, pp. 678-685.
50.Launder, B. E., and Spalding, D. B., 1974, “The numerical computation of turbulent flow”, Comp. Meth. In Appl. Mech. and Eng., Vol. 3, pp. 269-289.
51.STAR CD V.3.10B, “Simulation of Turbulent Flow in Arbitrary Regions”, Computational Dynamics Limited, UK, 2001
52.Van Doormaal, J. P. and Raithby, F. D.,1984, “Enhancements of the SIMPLE Method predicting Incompressible fliud flows”, Numerical heat Transfer, Vol. 7, pp. 147-163.
53.Patankar, S. V., 1984, “Numerical Heat Transfer and Fluid Flow”, Hemisphere Publishing corpotation.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top