1.S. Zhang, D. Sun, Y. Fu and H. Du, “Recent advances of superhard nanocomposite coatings: a review,” Surface and Coatings Technology, 167 (2003) 113-119.
2.I. Manika and J. Maniks, “Size effects in micro- and nanoscale indentation,” Acta Materialia, 54 (2006) 2049-2056.
3.J. G. Swadener, E. P. George and G. M. Pharr, “The correlation of the indentation size effect measured with indenters of various shapes,” Journal of the Mechanics and Physics of Solids, 50 (2002) 681-694.
4.G. M. Pharr, “Measurement of mechanical properties by ultra-low load indentation,” Materials Science and Engineering A, 253 (1998) 151-159.
5.T. H. Wang, T. H. Fang and Y. C. Lin, “Analysis of the substrate effects of strain-hardening thin films on silicon under nanoindentation,” Applied Physics A, 86 (2007) 335-341.
6.N. Tayebi, A. A. Polycarpou and T. F. Conry, “Effects of substrate on determination of hardness of thin films by nanoscratch and nanoindentation techniques,” Journal of Materials Research, Vol. 19 No. 6 (2004) 1791-1802.
7.R. Saha and W. D. Nix, “Effects of the substrate on the determination of thin film mechanical properties by nanoindentation,” Acta Materialia, 50 (2002) 23-38.
8.Z. Zong, J. Lou, O. O. Adewoye, A. A. Elmustafa, F. Hammad and W. O. Soboyejo, “Indentation size effects in the nano- and micro-hardness of fcc single crystal metals,” Materials Science and Engineering A, 434 (2006) 178-187.
9.K. Durst, B. Backes and M. G�刌en, “Indentation size effect in metallic materials: Correcting for the size of the plastic zone,” Scripta Materialia, 52 (2005) 1093-1097.
10.C. Tsou, C. Hsu and W. Fang, “Interfaces friction effect of sliding contact on nanoindentation test,” Sensors and Actuators A, 117 (2005) 309-316.
11.S. Sebastian and S. K. Biswas, “Effect of interface friction on the mechanics of indentation of a finite layer resting on a rigid substrate,” Journal of Physics D, 24 (1991) 1131-1140.
12.H. Pelletier, J. Krier and P. Mille, “Characterization of mechanical properties of thin films using nanoindentation test,” Mechanics of Materials, 38 (2006) 1182-1198.
13.X. Li, B. Bhushan, K. Takashima, C. W. Baek and Y. K. Kim, “Mechanical characterization of micro/nanoscale structures for MEMS/NEMS applications using nanoindentation techniques,” Ultramicroscopy, 97 (2003) 481-494.
14.Y. Cao, S. Allameh, D. Nankivil, S. Sethiaraj, T. Otiti and W. Soboyejo, “Nanoindentation measurements of the mechanical properties of polycrystalline Au and Ag thin films on silicon substrates: Effects of grain size and film thickness,” Materials Science and Engineering A, 427 (2006) 232-240.
15.M. Sakai, N. Hakiri and T. Miyajima, “Instrumented indentation microscope: A powerful tool for the mechanical characterization in microscales,” Journal of Materials Research, Vol. 21 No. 9 (2006) 2298-2303.
16.S. Rajagopalan and R. Vaidyanathan, “Nano- and Microscale Mechanical Characterization Using Instrumented Indentation,” JOM, Vol. 54 No. 9 (2002) 45-48+60.
17.P. S. Pizani, R. G. Jasinevicius and A. R. Zanatta, “Effect of the initial structure of silicon surface on the generation of multiple structural phases by cyclic microindentation,” Applied Physics Letters, 89, 031917 (2006) 1-3.
18.H. C. Barshilia and K. S. Rajam, “Characterization of Cu/Ni multilayer coatings by nanoindentation and atomic force microscopy,” Surface and Coatings Technology, 155 (2002) 195-202.
19.R. Rabe, J. –M. Breguet, P. Schwaller, S. Stauss, F. –J. Patscheider and J. Michler, “Observation of fracture and plastic deformation during indentation and scratching inside the scanning electron microscope,” Thin Solid Films, 469-470 (2004) 206-213.
20.J. Yan, H. Takahashi, J. Tamaki, X. Gai and T. Kuriyagawa, “Transmission electron microscopic observation of nanoindentations made on ductile-machined silicon wafers,” Applied Physics Letters, 87, 211901 (2005) 1-3.
21.D. Deduytsche, C. Detavernier, R. L. Van Meirhaeghe and C. Lavoie, “High-temperature degradation of NiSi films: Agglomeration versus NiSi2 nucleation,” Journal of Applied Physics, 98, 033526 (2005) 1-9.
22.S. Ruffell, J. E. Bradby and J. S. Williams, “Annealing kinetics of nanoindentation-induced polycrystalline high pressure phases in crystalline silicon,” Applied Physics Letters, 90, 131901 (2007) 1-3.
23.沈依蒔, “矽化鎳應用於超大型積體電路元件之接面和閘極,” 逢甲大學電機工程學系碩士班碩士論文, (2003).24.B. A. Julies, D. Knoesen, R. Pretorius and D. Asams, “A study of the NiSi to NiSi2 transition in the Ni–Si binary system,” Thin Solid Films, 347 (1999) 201-207.
25.Y. Hu and S. P. Tay, “Spectroscopic ellipsometry investigation of nickel silicide formation by rapid thermal process,” Journal of Vacuum Science & Technology A, Vol. 16 No. 3 (1998) 1820-1824.
26.F. F. Zhao, J. Z. Zheng, Z. X. Shen, T. Osipowicz, W. Z. Gao and L. H. Chan, “Thermal stability study of NiSi and NiSi2 thin films,” Microelectronic Engineering, 71 (2004) 104-111.
27.A. Lauwers, J. A. Kittl, M. J. H. Van Dal, O. Chamirian, M. A. Pawlak, M. de Potter, R. Lindsay, T. Raymakers, X. Pages, B. Mebarki, T. Mandrekar and K. Maex, “Ni based silicides for 45 nm CMOS and beyond,” Materials Science and Engineering B, 114-115 (2004) 29-41.
28.H. Iwai, T. Ohguro and S. I. Ohmi, “NiSi salicide technology for scaled CMOS,” Microelectronic Engineering, 60 (2002) 157-169.
29.A. Lauwers, P. Besser, T. Gutt, A. Satta, M. de Potter, R. Lindsay, N. Roelandts, F. Loosen, S. Jin, H. Bender, M. Stucchi, C. Vrancken, B. Deweerdt and K. Maex, “Comparative study of Ni-silicide and Co-silicide for sub 0.25-μm technologies,” Microelectronic Engineering, 50 (2000) 103-116.
30.M. A. Pawlak, J. A. Kittl, O. Chamirian, A. Veloso, A. Lauwers, T. Schram, K. Maex and A. Vantomme, “Investigation of Ni fully silicided gates for sub-45 nm CMOS technologies,” Microelectronic Engineering, 76 (2004) 349-353.
31.J. A. Kittl, A. Lauwers, M. A. Pawlak, M. J. H. van Dal, A. Veloso, K. G. Anil, G. Pourtois, C. Demeurisse, T. Schram, B. Brijs, M. de Potter, C. Vrancken and K. Maex, “Ni fully silicided gates for 45 nm CMOS applications,” Microelectronic Engineering, 82 (2005) 441-448.
32.K. Makihira, M. Yoshii and T. Asano, “CMOS Application of Single-Grain Thin Film Transistor Produced Using Metal Imprint Technology,” Japanese Journal of Applied Physics Part 1, Vol. 42 No. 4B (2003) 1983-1987.
33.W. R. Chen, T. C. Chang, P. T. Liu, C. H. Tu, F. W. Chi, S. W. Tsao and C. Y. Chang, “Formation of stacked nickel-silicide nanocrystals by using a co-mixed target for nonvolatile memory application,” Surface and Coatings Technology, 202 (2007) 1292-1296.
34.F. M. Yang, T. C. Chang, P. T. Liu, Y. H. Yeh, Y. C. Yu, J. Y. Lin, S. M. Sze and J. C. Lou, ”Nickel silicide nanocrystals embedded in SiO2 and HfO2 for nonvolatile memory application,” Thin Solid Films, 516 (2007) 360-363.
35.R. S. Howell, G. Sarcona, S. K. Saha and M. K. Hatalis, “Preparation and stability of low temperature cobalt and nickel silicides on thin polysilicon films,” Journal of Vacuum Science and Technology A, Vol. 18 No. 1 (2000) 87-93.
36.C. Anthony and C. Fischer, “Nanoindentation,” 2nd ed. Springer, N. Y. (2004).
37.S. Timoshenko and J. N. Goodier, “Theory of Elasticity,” 2nd ed. McGraw-Hill, N. Y. (1951).
38.X. Li and B. Bhushan, “A review of nanoindentation continuous stiffness measurement technique and its applications,” Materials Characterization, 48 (2002) 11-36.
39.W. C. Oliver and G. M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” Journal of Materials Research, Vol. 7 No. 6 (1992) 1564-1583.
40.G. M. Pharr, W. C. Oliver and F. R. Brotzen, “On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation,” Journal of Materials Research, Vol. 7 No.3 (1992) 613-617.
41.G. M. Pharr and A. Bolshakov, “Understanding nanoindentation unloading curves,” Journal of Materials Research, Vol. 17 No. 10 (2002) 2660-2671.
42.W. C. Oliver and G. M. Pharr, “Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology,” Journal of Materials Research, Vol. 19 No. 1 (2004) 3-20.
43.K. –D. Bouzakis, N. Michailidis, S. Hadjiyiannis, G. Skordaris and G. Erkens, “The effect of specimen roughness and indenter tip geometry on the determination accuracy of thin hard coatings stress–strain laws by nanoindentation,” Materials Characterization, 49 (2003) 149-156.
44.M. S. Bobji and S. K. Biswas, “Deconvolution of hardness from data obtained from nanoindentation of rough surfaces,” Journal of Materials Research, Vol. 14 No. 6 (1999) 2259-2268.
45.Y. Sun, T. Bell and S. Zheng, “Finite element analysis of the critical ratio of coating thickness to indentation depth for coating property measurements by nanoindentation,” Thin Solid Films, 258 (1995) 198-204.
46.D. E. Karmer, A. A. Volinsky, N. R. Moody and W. W. Gerberich, “Substrate effects on indentation plastic zone development in thin soft films,” Journal of Materials Research, Vol. 16 No. 11 (2001) 3150-3157.
47.A. Bolshakov and G. M. Pharr, “Influences of pileup on the measurement of mechanical properties by load and depth sensing indentation techniques,” Journal of Materials Research, Vol. 13 No. 4 (1998) 1049-1058.
48.K. W. McElhaney, J. J. Vlassak and W. D. Nix, “Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments,” Journal of Materials Research, Vol. 13 No. 5 (1998) 1300-1306.
49.K. Miyake, S. Fujisawa, A. Korenaga, T. Ishida and S. Sasaki, “The Effect of Pile-Up and Contact Area on Hardness Test by Nanoindentation,” Japanese Journal of Applied Physics, Vol. 40 No. 7B (2004) 4602-4605.
50.H. Hosodawa, K. Shimojima, H. Iwasaki and M. Mabuchi, “Nanomachining of nanocrystalline nickel by focused ion beam,” Philosophical Magazine Letters, Vol. 84 No. 11 (2004) 713-718.
51.M. Tanaka, K. Furuya and T. Saito, “TEM observation of structural differences between two types of Ni silicide/Si thin films caused by FIB irradiation,” Thin Solid Films, 319 (1998) 101-105.
52.J. M. Cairney, P. R. Munroe and J. H. Schneibel, “Examination of fracture surfaces using focused ion beam milling,” Scripta Materialia, 42 (2000) 473-478.
53.B. Yang and T. G. Nieh, “Effect of the nanoindentation rate on the shear band formation in an Au-based bulk metallic glass,” Acta Materialia, 55 (2007) 295-300.
54.R. Rao, J. E. Bradby, S. Ruffell and J. S. Williams, “Nanoindentation-induced phase transformation in crystalline silicon and relaxed amorphous silicon,” Microelectronics Journal, 38 (2007) 722-726.
55.I. Zarudi, J. Zou and L. C. Zhang, “Microstructures of phases in indented silicon - A high resolution characterization,” Applied Physics Letters, Vol. 82 No. 6 (2003) 874-876.
56.T. Otiti, Y. Cao, S. M. Allameh, Z. Zong, O. Akogwu and W. O. Soboyejo, “Nanoindentation Measurements of the Mechanical Properties of Ni Thin Films: Effects of Film Microstructure and Substrate Modulus,” Materials and Manufacturing Processes, 22 (2007) 195-205.
57.Z. M. Zhou, Y. Zhou, C. S. Yang, J. A. Chen, G. F. Ding, W. Ding, M. J. Wang and Y. M. Zhang, “The evaluation of Young’s modulus and residual stress of nickel films by microbridge testings,” Measurement Science and Technology, 15 (2004) 2389-2394.
58.J. Foggiato, W. S. Yoo, M. Ouaknine, T. Murakami and T. Fukada, “Optimizing the formation of nickel silicide,” Materials Science and Engineering B, 114-115 (2004) 56-60.
59.P. L. Gai, R. Mitra and J. R. Weertman, “Structural variations in nanocrystalline nickel films,” Pure of Applied Chemistry, Vol. 74 No. 9 (2002) 1519-1526.
60.S. R. Jian, “Mechanical Deformation Induced in Si and GaN Under Berkovich Nanoindentation,” Nanoscale Research Letters, Vol. 3 No. 1 (2008) 6-13.
61.I. Zarudi, L. C. Zhang, W. C. D. Cheong and T. X. Yu, “The difference of phase distributions in silicon after indentation with Berkovich and spherical indenters,” Acta Materialia, 53 (2005) 4795-4800.
62.Y. J. Chang and J. L. Erskine, “Diffusion layers and the Schottky-barrier height in nickel silicide-silicon interfaces,” Physical Review B, Vol. 20 No. 10 (1983) 5766-5773.
63.Y. L. Jiang, A. Agarwal, G. P. Ru, G. Cai and B. Z. Li, “Nickel silicide formation on shallow junctions,” Nuclear Instruments and Methods in Physics Research B, 237 (2005) 160-166.
64.Y. S. Chang, I. J. Hsieh and J. Y. Lee, “Growth, structure and electrical characteristics of epitaxial nickel silicide from chemically electroless Ni deposition on Si,” Journal of Materials Science, 25 (1990) 2637-2641.
65.T. Sasaki, S. Nichibe, H. Harima, T. Isshiki, M. Toshimoto, K. Kisoda, W. S. Yoo and T. Fukada, “Raman Study of Low-Temperature Formation of Nickel Silicide Layers,” 14th International Conference on Advanced Thermal Processing of Semiconductors, RTP (2006) 217-222.
66.P. S. Lee, K. L. Pey, D. Mangelinck, J. Ding, D. Z. Chi, J. Y. Dai and L. Chan, “Phase and Layer Stability of Ni- and Ni(Pt)-Silicides on Narrow Poly-Si Lines,” Journal of The Electrochemical Society, Vol. 149 No. 6 (2002) G331-G335.