(34.237.124.210) 您好!臺灣時間:2021/02/25 19:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳俊明
研究生(外文):Jyun-Ming Chen
論文名稱:鎳矽薄膜之奈米壓痕行為及退火微觀結構變化之研究
論文名稱(外文):Nanoindentation Behaviour and Annealed Microstructural Evolution of Ni/Si Thin Film
指導教授:李偉賢李偉賢引用關係
指導教授(外文):Woei-Shyan Lee
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:86
中文關鍵詞:奈米壓痕退火處理鎳矽化物
外文關鍵詞:nanoindentationnickel silicidesannealing
相關次數:
  • 被引用被引用:1
  • 點閱點閱:196
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:45
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要是利用奈米壓痕的技術量測鎳/矽薄膜的機械性質並探討奈米壓痕深度及加熱溫度對鎳/矽薄膜其微觀機械性質與壓痕影響區之鎳矽化合物形成之影響。藉由一快速且有效率搜尋微小奈米壓痕之陣列定位技術,可準確確認壓痕之位置。實驗利用半導體製程於 (100) 方向之矽晶圓上製作一100 nm厚度之鎳薄膜,選取並切割實驗試片後,以奈米壓痕系統分別對試片進行500 nm及800 nm深度之奈米壓痕試驗,以瞭解壓痕深度對微觀機械性質之影響。再將經奈米壓痕試驗之試片分別加熱至200℃、300℃、500℃及800℃,並持溫二分鐘,藉以比較未加熱及不同加熱條件下,其微觀組織之變化及壓痕影響區之鎳矽化合物形成之特徵與機制。爾後,透過所發展之定位陣列技術定位出原有之奈米壓痕位置,並利用聚焦離子束顯微鏡切割出穿透式電子顯微鏡之觀測試片。
巨觀機械性質的量測結果顯示,硬度與楊氏模數曲線受壓痕尺寸效應與表面粗糙度 (壓痕深度小於10 nm) 及基材效應 (壓痕深度大於膜厚10%) 所影響,薄膜硬度值約為 GPa,楊氏模數約為 GPa。微觀結果顯示,鎳矽薄膜及壓痕影響區內鎳矽化合物之形成受奈米壓痕及加熱溫度之影響,在壓痕器正下方之高應力塑性變形區造成原子重新排列,矽基材由原本diamond cubic結構轉變為Si-III與Si-XII混合的結構,隨著加熱溫度的增加,鎳原子大量往壓痕區擴散並形成鎳矽化合物,在200℃、300℃及800℃下分別形成 、 及 ,此結果說明奈米壓痕改變了薄膜與基材間之表面能量、內應力及原子排列,經外加溫度之作用,加速鎳、矽界面原子擴散,整合出局部區域之低電阻的鎳矽化合物。
The study investigates the nano-mechanical properties of Ni/Si thin film using a nanoindentation technique. The effects of indentation depth and the annealing temperature on the microstructural evolution are also evaluated. The thin film is prepared by depositing a Ni layer with thickness of 100 nm on a Si(100) substrate using an evaporation deposition technique. The fabricated film is indented to maximum depths of 500 nm or 800 nm, and selected specimens are then annealed at temperatures of 200℃, 300℃, 500℃ or 800℃ for 2 min. The indented position is accurately identified using a proprietary position array system, and TEM specimens are extracted by the focused ion beam microscope technique.
The overall tendencies of the hardness and Young’s modulus curves are governed by the indentation size effect and surface roughness for indentation depths of less than 10 nm, and by the substrate effect for indentation depths greater than 10% of the thin film thickness. The hardness and Young’s modulus are measured as GPa and GPa respectively. The microstructural observations reveal that nanoindentation induces an atoms reorganization, and results in the formation of high-stress plastic deformation regions beneath the indenter. The microstructure of indentation affected zone of silicon substrate transfers from diamond cubic structure to a mixed structure of Si-III and Si-XII. However, the heating temperature has a significant effect on the formation of nickel silicides phase. The diffusion ability of Ni atoms is enhanced as the heating temperature is increased. The nickel silicides of , and are found at 200℃, 300℃ and 800℃, respectively. The results indicate that nanoindentation causes a significant change in the surface energy, internal stress state and atomic arrangements of the nickel thin film and silicon substrate. The annealing process activates atomic diffusion in the interface between the thin film and substrate, and this accelerates the formation of nickel silicides phase, and results in a low resistance zone.
中文摘要 I
ABSTRACT II
誌謝 IV
總目錄 V
圖目錄 VIII
第一章 前言 1
第二章 理論與文獻回顧 4
2-1金屬矽化物 4
2-1-1金屬矽化物的介紹 4
2-1-2金屬矽化合物特性與形成機制 4
2-1-3鎳矽化合物之應用 5
2-2 奈米壓痕理論 6
2-2-1薄膜機械性質之量測 6
2-2-2初始卸載勁度與接觸面積之量測 8
2-2-3連續勁度量測法 10
2-3 奈米壓痕實驗前的校正 11
2-3-1五點定位校正 12
2-3-3熱漂移校正 12
2-4 影響薄膜量測之因素 13
2-4-1壓痕尺寸效應 (Indentation Size Effect, ISE) 13
2-4-2表面粗糙效應 (Surface roughness) 13
2-4-3基材效應 (Substrate effect) 14
2-4-4擠出和沉陷效應 (Pile-up & sink-in effect) 14
2-5 聚焦離子束顯微技術 15
第三章 實驗方法與步驟 22
3-1實驗流程 22
3-2實驗儀器與設備 22
3-2-1熱蒸鍍機 (Thermal coater) 23
3-2-2電子束微影光罩製作系統 23
(Electron beamlithography system, EBL) 23
3-2-3奈米三維量測儀及奈米薄膜材料試驗機 (Nano-indenter XP) 24
3-2-4快速退火爐 (Rapid Thermal Annealing, RTA) 25
3-2-5聚焦離子束顯微鏡 25
(Focused Ion Beam, FIB/SEM) 25
3-2-6高解析穿透式電子顯微鏡 (High Resolution Transmission Electron Microscope, HR-TEM) 26
3-2-7拉曼光譜儀 (Raman Spectroscopy) 26
3-3試片製備 27
3-3-1 蒸鍍材料之性質與試片製備 27
3-3-2 微影蝕刻製程 28
3-4實驗方法與步驟 29
3-4-1奈米壓痕試驗 29
3-4-2對試片進行不同溫度的退火處理 29
3-4-3微觀結構的觀察 30
第四章 實驗結果與討論 39
4-1 薄膜機械性質之討論 39
4-1-2 壓痕深度與硬度曲線之分析 39
4-1-3 壓痕深度與楊氏模數曲線之分析 40
4-2 壓痕表面形貌之討論 40
4-2-1 壓痕深度500 nm退火處理前後之壓痕表面形貌分析 41
4-2-2 壓痕深度800 nm退火處理前後之壓痕表面形貌分析 41
4-2-3 不同壓痕深度下退火處理前後之壓痕表面形貌分析 42
4-3 壓痕剖面形貌之討論 43
4-3-1 壓痕深度500 nm退火處理前後之壓痕剖面形貌分析 43
4-3-2 壓痕深度800 nm退火處理前後之壓痕剖面形貌分析 45
4-3-3 不同壓痕深度下退火處理前後之壓痕剖面形貌分析 47
4-4 壓痕區拉曼光譜之討論 48
第五章 結論 76
參考文獻 78
自述 86
1.S. Zhang, D. Sun, Y. Fu and H. Du, “Recent advances of superhard nanocomposite coatings: a review,” Surface and Coatings Technology, 167 (2003) 113-119.
2.I. Manika and J. Maniks, “Size effects in micro- and nanoscale indentation,” Acta Materialia, 54 (2006) 2049-2056.
3.J. G. Swadener, E. P. George and G. M. Pharr, “The correlation of the indentation size effect measured with indenters of various shapes,” Journal of the Mechanics and Physics of Solids, 50 (2002) 681-694.
4.G. M. Pharr, “Measurement of mechanical properties by ultra-low load indentation,” Materials Science and Engineering A, 253 (1998) 151-159.
5.T. H. Wang, T. H. Fang and Y. C. Lin, “Analysis of the substrate effects of strain-hardening thin films on silicon under nanoindentation,” Applied Physics A, 86 (2007) 335-341.
6.N. Tayebi, A. A. Polycarpou and T. F. Conry, “Effects of substrate on determination of hardness of thin films by nanoscratch and nanoindentation techniques,” Journal of Materials Research, Vol. 19 No. 6 (2004) 1791-1802.
7.R. Saha and W. D. Nix, “Effects of the substrate on the determination of thin film mechanical properties by nanoindentation,” Acta Materialia, 50 (2002) 23-38.
8.Z. Zong, J. Lou, O. O. Adewoye, A. A. Elmustafa, F. Hammad and W. O. Soboyejo, “Indentation size effects in the nano- and micro-hardness of fcc single crystal metals,” Materials Science and Engineering A, 434 (2006) 178-187.
9.K. Durst, B. Backes and M. G�刌en, “Indentation size effect in metallic materials: Correcting for the size of the plastic zone,” Scripta Materialia, 52 (2005) 1093-1097.
10.C. Tsou, C. Hsu and W. Fang, “Interfaces friction effect of sliding contact on nanoindentation test,” Sensors and Actuators A, 117 (2005) 309-316.
11.S. Sebastian and S. K. Biswas, “Effect of interface friction on the mechanics of indentation of a finite layer resting on a rigid substrate,” Journal of Physics D, 24 (1991) 1131-1140.
12.H. Pelletier, J. Krier and P. Mille, “Characterization of mechanical properties of thin films using nanoindentation test,” Mechanics of Materials, 38 (2006) 1182-1198.
13.X. Li, B. Bhushan, K. Takashima, C. W. Baek and Y. K. Kim, “Mechanical characterization of micro/nanoscale structures for MEMS/NEMS applications using nanoindentation techniques,” Ultramicroscopy, 97 (2003) 481-494.
14.Y. Cao, S. Allameh, D. Nankivil, S. Sethiaraj, T. Otiti and W. Soboyejo, “Nanoindentation measurements of the mechanical properties of polycrystalline Au and Ag thin films on silicon substrates: Effects of grain size and film thickness,” Materials Science and Engineering A, 427 (2006) 232-240.
15.M. Sakai, N. Hakiri and T. Miyajima, “Instrumented indentation microscope: A powerful tool for the mechanical characterization in microscales,” Journal of Materials Research, Vol. 21 No. 9 (2006) 2298-2303.
16.S. Rajagopalan and R. Vaidyanathan, “Nano- and Microscale Mechanical Characterization Using Instrumented Indentation,” JOM, Vol. 54 No. 9 (2002) 45-48+60.
17.P. S. Pizani, R. G. Jasinevicius and A. R. Zanatta, “Effect of the initial structure of silicon surface on the generation of multiple structural phases by cyclic microindentation,” Applied Physics Letters, 89, 031917 (2006) 1-3.
18.H. C. Barshilia and K. S. Rajam, “Characterization of Cu/Ni multilayer coatings by nanoindentation and atomic force microscopy,” Surface and Coatings Technology, 155 (2002) 195-202.
19.R. Rabe, J. –M. Breguet, P. Schwaller, S. Stauss, F. –J. Patscheider and J. Michler, “Observation of fracture and plastic deformation during indentation and scratching inside the scanning electron microscope,” Thin Solid Films, 469-470 (2004) 206-213.
20.J. Yan, H. Takahashi, J. Tamaki, X. Gai and T. Kuriyagawa, “Transmission electron microscopic observation of nanoindentations made on ductile-machined silicon wafers,” Applied Physics Letters, 87, 211901 (2005) 1-3.
21.D. Deduytsche, C. Detavernier, R. L. Van Meirhaeghe and C. Lavoie, “High-temperature degradation of NiSi films: Agglomeration versus NiSi2 nucleation,” Journal of Applied Physics, 98, 033526 (2005) 1-9.
22.S. Ruffell, J. E. Bradby and J. S. Williams, “Annealing kinetics of nanoindentation-induced polycrystalline high pressure phases in crystalline silicon,” Applied Physics Letters, 90, 131901 (2007) 1-3.
23.沈依蒔, “矽化鎳應用於超大型積體電路元件之接面和閘極,” 逢甲大學電機工程學系碩士班碩士論文, (2003).
24.B. A. Julies, D. Knoesen, R. Pretorius and D. Asams, “A study of the NiSi to NiSi2 transition in the Ni–Si binary system,” Thin Solid Films, 347 (1999) 201-207.
25.Y. Hu and S. P. Tay, “Spectroscopic ellipsometry investigation of nickel silicide formation by rapid thermal process,” Journal of Vacuum Science & Technology A, Vol. 16 No. 3 (1998) 1820-1824.
26.F. F. Zhao, J. Z. Zheng, Z. X. Shen, T. Osipowicz, W. Z. Gao and L. H. Chan, “Thermal stability study of NiSi and NiSi2 thin films,” Microelectronic Engineering, 71 (2004) 104-111.
27.A. Lauwers, J. A. Kittl, M. J. H. Van Dal, O. Chamirian, M. A. Pawlak, M. de Potter, R. Lindsay, T. Raymakers, X. Pages, B. Mebarki, T. Mandrekar and K. Maex, “Ni based silicides for 45 nm CMOS and beyond,” Materials Science and Engineering B, 114-115 (2004) 29-41.
28.H. Iwai, T. Ohguro and S. I. Ohmi, “NiSi salicide technology for scaled CMOS,” Microelectronic Engineering, 60 (2002) 157-169.
29.A. Lauwers, P. Besser, T. Gutt, A. Satta, M. de Potter, R. Lindsay, N. Roelandts, F. Loosen, S. Jin, H. Bender, M. Stucchi, C. Vrancken, B. Deweerdt and K. Maex, “Comparative study of Ni-silicide and Co-silicide for sub 0.25-μm technologies,” Microelectronic Engineering, 50 (2000) 103-116.
30.M. A. Pawlak, J. A. Kittl, O. Chamirian, A. Veloso, A. Lauwers, T. Schram, K. Maex and A. Vantomme, “Investigation of Ni fully silicided gates for sub-45 nm CMOS technologies,” Microelectronic Engineering, 76 (2004) 349-353.
31.J. A. Kittl, A. Lauwers, M. A. Pawlak, M. J. H. van Dal, A. Veloso, K. G. Anil, G. Pourtois, C. Demeurisse, T. Schram, B. Brijs, M. de Potter, C. Vrancken and K. Maex, “Ni fully silicided gates for 45 nm CMOS applications,” Microelectronic Engineering, 82 (2005) 441-448.
32.K. Makihira, M. Yoshii and T. Asano, “CMOS Application of Single-Grain Thin Film Transistor Produced Using Metal Imprint Technology,” Japanese Journal of Applied Physics Part 1, Vol. 42 No. 4B (2003) 1983-1987.
33.W. R. Chen, T. C. Chang, P. T. Liu, C. H. Tu, F. W. Chi, S. W. Tsao and C. Y. Chang, “Formation of stacked nickel-silicide nanocrystals by using a co-mixed target for nonvolatile memory application,” Surface and Coatings Technology, 202 (2007) 1292-1296.
34.F. M. Yang, T. C. Chang, P. T. Liu, Y. H. Yeh, Y. C. Yu, J. Y. Lin, S. M. Sze and J. C. Lou, ”Nickel silicide nanocrystals embedded in SiO2 and HfO2 for nonvolatile memory application,” Thin Solid Films, 516 (2007) 360-363.
35.R. S. Howell, G. Sarcona, S. K. Saha and M. K. Hatalis, “Preparation and stability of low temperature cobalt and nickel silicides on thin polysilicon films,” Journal of Vacuum Science and Technology A, Vol. 18 No. 1 (2000) 87-93.
36.C. Anthony and C. Fischer, “Nanoindentation,” 2nd ed. Springer, N. Y. (2004).
37.S. Timoshenko and J. N. Goodier, “Theory of Elasticity,” 2nd ed. McGraw-Hill, N. Y. (1951).
38.X. Li and B. Bhushan, “A review of nanoindentation continuous stiffness measurement technique and its applications,” Materials Characterization, 48 (2002) 11-36.
39.W. C. Oliver and G. M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” Journal of Materials Research, Vol. 7 No. 6 (1992) 1564-1583.
40.G. M. Pharr, W. C. Oliver and F. R. Brotzen, “On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation,” Journal of Materials Research, Vol. 7 No.3 (1992) 613-617.
41.G. M. Pharr and A. Bolshakov, “Understanding nanoindentation unloading curves,” Journal of Materials Research, Vol. 17 No. 10 (2002) 2660-2671.
42.W. C. Oliver and G. M. Pharr, “Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology,” Journal of Materials Research, Vol. 19 No. 1 (2004) 3-20.
43.K. –D. Bouzakis, N. Michailidis, S. Hadjiyiannis, G. Skordaris and G. Erkens, “The effect of specimen roughness and indenter tip geometry on the determination accuracy of thin hard coatings stress–strain laws by nanoindentation,” Materials Characterization, 49 (2003) 149-156.
44.M. S. Bobji and S. K. Biswas, “Deconvolution of hardness from data obtained from nanoindentation of rough surfaces,” Journal of Materials Research, Vol. 14 No. 6 (1999) 2259-2268.
45.Y. Sun, T. Bell and S. Zheng, “Finite element analysis of the critical ratio of coating thickness to indentation depth for coating property measurements by nanoindentation,” Thin Solid Films, 258 (1995) 198-204.
46.D. E. Karmer, A. A. Volinsky, N. R. Moody and W. W. Gerberich, “Substrate effects on indentation plastic zone development in thin soft films,” Journal of Materials Research, Vol. 16 No. 11 (2001) 3150-3157.
47.A. Bolshakov and G. M. Pharr, “Influences of pileup on the measurement of mechanical properties by load and depth sensing indentation techniques,” Journal of Materials Research, Vol. 13 No. 4 (1998) 1049-1058.
48.K. W. McElhaney, J. J. Vlassak and W. D. Nix, “Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments,” Journal of Materials Research, Vol. 13 No. 5 (1998) 1300-1306.
49.K. Miyake, S. Fujisawa, A. Korenaga, T. Ishida and S. Sasaki, “The Effect of Pile-Up and Contact Area on Hardness Test by Nanoindentation,” Japanese Journal of Applied Physics, Vol. 40 No. 7B (2004) 4602-4605.
50.H. Hosodawa, K. Shimojima, H. Iwasaki and M. Mabuchi, “Nanomachining of nanocrystalline nickel by focused ion beam,” Philosophical Magazine Letters, Vol. 84 No. 11 (2004) 713-718.
51.M. Tanaka, K. Furuya and T. Saito, “TEM observation of structural differences between two types of Ni silicide/Si thin films caused by FIB irradiation,” Thin Solid Films, 319 (1998) 101-105.
52.J. M. Cairney, P. R. Munroe and J. H. Schneibel, “Examination of fracture surfaces using focused ion beam milling,” Scripta Materialia, 42 (2000) 473-478.
53.B. Yang and T. G. Nieh, “Effect of the nanoindentation rate on the shear band formation in an Au-based bulk metallic glass,” Acta Materialia, 55 (2007) 295-300.
54.R. Rao, J. E. Bradby, S. Ruffell and J. S. Williams, “Nanoindentation-induced phase transformation in crystalline silicon and relaxed amorphous silicon,” Microelectronics Journal, 38 (2007) 722-726.
55.I. Zarudi, J. Zou and L. C. Zhang, “Microstructures of phases in indented silicon - A high resolution characterization,” Applied Physics Letters, Vol. 82 No. 6 (2003) 874-876.
56.T. Otiti, Y. Cao, S. M. Allameh, Z. Zong, O. Akogwu and W. O. Soboyejo, “Nanoindentation Measurements of the Mechanical Properties of Ni Thin Films: Effects of Film Microstructure and Substrate Modulus,” Materials and Manufacturing Processes, 22 (2007) 195-205.
57.Z. M. Zhou, Y. Zhou, C. S. Yang, J. A. Chen, G. F. Ding, W. Ding, M. J. Wang and Y. M. Zhang, “The evaluation of Young’s modulus and residual stress of nickel films by microbridge testings,” Measurement Science and Technology, 15 (2004) 2389-2394.
58.J. Foggiato, W. S. Yoo, M. Ouaknine, T. Murakami and T. Fukada, “Optimizing the formation of nickel silicide,” Materials Science and Engineering B, 114-115 (2004) 56-60.
59.P. L. Gai, R. Mitra and J. R. Weertman, “Structural variations in nanocrystalline nickel films,” Pure of Applied Chemistry, Vol. 74 No. 9 (2002) 1519-1526.
60.S. R. Jian, “Mechanical Deformation Induced in Si and GaN Under Berkovich Nanoindentation,” Nanoscale Research Letters, Vol. 3 No. 1 (2008) 6-13.
61.I. Zarudi, L. C. Zhang, W. C. D. Cheong and T. X. Yu, “The difference of phase distributions in silicon after indentation with Berkovich and spherical indenters,” Acta Materialia, 53 (2005) 4795-4800.
62.Y. J. Chang and J. L. Erskine, “Diffusion layers and the Schottky-barrier height in nickel silicide-silicon interfaces,” Physical Review B, Vol. 20 No. 10 (1983) 5766-5773.
63.Y. L. Jiang, A. Agarwal, G. P. Ru, G. Cai and B. Z. Li, “Nickel silicide formation on shallow junctions,” Nuclear Instruments and Methods in Physics Research B, 237 (2005) 160-166.
64.Y. S. Chang, I. J. Hsieh and J. Y. Lee, “Growth, structure and electrical characteristics of epitaxial nickel silicide from chemically electroless Ni deposition on Si,” Journal of Materials Science, 25 (1990) 2637-2641.
65.T. Sasaki, S. Nichibe, H. Harima, T. Isshiki, M. Toshimoto, K. Kisoda, W. S. Yoo and T. Fukada, “Raman Study of Low-Temperature Formation of Nickel Silicide Layers,” 14th International Conference on Advanced Thermal Processing of Semiconductors, RTP (2006) 217-222.
66.P. S. Lee, K. L. Pey, D. Mangelinck, J. Ding, D. Z. Chi, J. Y. Dai and L. Chan, “Phase and Layer Stability of Ni- and Ni(Pt)-Silicides on Narrow Poly-Si Lines,” Journal of The Electrochemical Society, Vol. 149 No. 6 (2002) G331-G335.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔