跳到主要內容

臺灣博碩士論文加值系統

(3.238.135.174) 您好!臺灣時間:2021/08/05 07:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳志龍
研究生(外文):Chih-Lung Chen
論文名稱:結合有限元素法和PIC法模擬帶電離子在毛細管電泳中之遷移
論文名稱(外文):Simulation of Charged Ion Migration in Capillary Zone Electrophoresis using FE/PIC Method
指導教授:洪振益洪振益引用關係
指導教授(外文):Chen-I Hung
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:90
中文關鍵詞:電雙層PIC法毛細管電泳有限元素法
外文關鍵詞:Electrical Double LayerParticle-In-CellFinite Element MethodCapillary Zone Electrophoresis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:106
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
毛細管電泳(Capillary Zone Electrophoresis,簡稱CZE)為近年來迅速發展的一種分析方法。在外加直流電場中,因毛細管電泳之幾何外形以及分析物的電荷大小、體積、形狀、電荷密度、質量都會造成不同的移動速度,而影響分離的效率。為了往後研究不同毛細管電泳之幾何外形,在處理複雜、不規則邊界時,能有比較精準的結果,所以使用有限元素法(Finite Element method)來計算數值。而在毛細管電泳數值模型中,一般常用來計算溶質在毛細管電泳晶片中的流動,通常是使用濃度方程式,但使用濃度方程式無法清楚描述不同帶電性質溶質離子的運動現象,所以本研究採用粒子模擬法(Particle-In-Cell method),來瞭解微管道內不同帶電性質溶質離子之運動現象。由模擬結果顯示毛細管壁面電位,將會影響不同帶電離子在電雙層中之運動現象。帶正電之離子由於受到壁面負電位之影響,將會被吸引至壁面附近,而負離子則會被排斥,被推出電雙層外。且帶正電離子之遷移速度會大於帶負電離子遷移速度,會較早進入分離管道。
Capillary Zone Electrophoresis (CZE) is a kind of analysis method that develops rapidly in recent years. In external electric field, the geometry of the CZE system and analysis of charge size, volume, shape, density, and mass will cause the different velocities and further influence the separation efficiency. In order to get the more accurate result for studying different geometry and complicated, irregular boundaries, this study uses the Finite Element Method (FEM) in the computation. Traditional numerical schemes use the concentration diffusion equation to simulate the solute concentration distribution in CZE system. However, it can’t describe the different motions of the differently charged solute ionic migration. This study uses the Particle-In-Cell (PIC) method to understand the different motions of the differently charged solute ions in the micro-channel. The results show that the zeta potential on the channel wall affects the different motions of the differently charged ions in the Electrical Double Layer (EDL). The positive ions were attracted to the channel wall under the influence of the zeta potential. The negative ions were repelled and they were pushed out of the EDL. Furthermore, it is shown that the positive ions migrate more rapidly than the negative ions in the injection process, and the positive ions enter the separation channel faster than the negative ones.
摘 要 I
Abstract II
誌 謝 III
目 錄 IV
圖 目 錄 VII
符 號 說 明 X
第一章 緒論 1
1-1 前言 1
1-2 研究動機與目的 4
1-3文獻回顧 6
1-4 本文架構 9
第二章 理論分析 10
2-1 基本假設 10
2-2 統御方程式 11
2-3 無因次分析 13
2-4 電雙層理論 15
2-5 解電雙層內部分布之Poisson-Boltzmann方程式 17
2-6 電泳(Electrophoresis) 19
2-7 電滲流現象 20
2-8 帶電離子遷移率 22
2-9 粒子模擬法(Particle-In-Cell method,簡稱PIC) 25
第三章 數值方法 26
3-1有限元素簡介 26
3-2 數值流程 29
3-2-1 將帶電溶質離子之電荷分布至所在元素中的節點上並計算其電荷密度 30
3-2-2 電場方程式之離散 32
3-2-3 電雙層分布方程式之離散 33
3-2-4 電滲流流場方程式離散 35
3-2-5 計算帶電溶質離子受力移動後之新位置 41
第四章 結果與討論 44
4-1 毛細管電泳晶片之幾何外形與網格配置 44
4-2 物理性質 45
4-3 注入過程之結果 46
4-4 分離過程之結果 49
第五章 結論與未來發展 51
5-1 結論 51
5-2 未來發展 52
參考文獻 53
附 錄 A 83
附 錄 B 87
附 錄 C 89
[1]Manz, A., Graber, N., and Widmer, H. M., “Miniaturized Total Chemical Analysis Systems: A Novel Concept for Chemical Sensing,” Sensors and Actuators B, Vol.1, pp.244-248, 1990.
[2]Paegel, B. M., Hutt, L. D., Simpson, P. C., and Mathies, R. A., “Turn Geometry for Minimizing Band Broadening in Microfabricated Capillary Electrophoresis Channels,” Analytical Chemistry, Vol.72, No.14, pp.3030-3037, 2000.
[3]Seiler, K., Harrison, D. J., and Manz, A., “Planar Glass Chips for Capillary Electrophoresis: Repetitive Sample Injection, Quantization, Separation Efficiency,” Analytical Chemistry, Vol.65, pp.1481-1488, 1993.
[4]Harrison, D. J., Glavina, P. G., and Manz, A., “Towards Miniaturized Electrophoresis and Chemical Analysis System on Silicon: an Alternative to Chemical Sensor,” Sensors and Actuators B, Vol.10, pp.107-116, 1993.

[5]Fan, Z. H. and Harrison, D. J., “Micromachining of Capillary Electrophoresis Injectors and Separators on Glass Chips and Evaluation of Flow at Capillary Intersections,” Analytical Chemistry, Vol.66, No.1, pp.177-184, 1994.
[6]Seiler, K., Fan, Z. H., Fluri, K., and Harrison, D. J., “Electroosmotic Pumping and Valveless Control of Fluid Flow within a Manifold of Capillaries on a Glass Chip,” Analytical Chemistry, Vol.66, pp.3485-3491, 1994.
[7]Helmholtz, H. V., “Studien über Elektrische Grenzschichten,” Wiedemann′s Annual Physical Chemistry, Vol.7, pp.337-382, 1879.
[8]Kohlrausch, F., “Ueber Concentrations-Verschiebungen durch Electrolyse im Inneren von Lösungen und Lösungsgemischen,” Annual Review of Physical Chemistry, Vol.62, pp.209-239, 1897.
[9]Tiselius, A., “The Moving Boundary Method of Studying the Electrophoresis of Proteins,” Nova Acta Regia Societatis Scientiarum Upsaliensis Series IV, Vol.7, No.4, 1937.
[10]Mikkers, F. E. P., Everaerts, F. M., and Verheggen, Th. P. E. M., “High-performance Zone Electrophoresis,” Journal of Chromatography, Vol.169, pp.11-20, 1979.
[11]Jorgenson, J. W. and Lukacs, K. D., “Zone Electrophoreisis in Open-Tubular Glass Capillaries,” Analytical Chemistry, Vol.53, pp.1298-1302, 1981.
[12]Harrison, D. J., Manz, A., Fan, Z., and Ludi, H., “Capillary Electrophoresis and Sample Injection Systems Integrated on a Planar Glass Chip,” Analytical Chemistry, Vol.64, No.17, pp.1926-1932, 1992.
[13]Muzikar, J., Van De Goor, T., GaŠ, B., and Kenndler, E., “Electrophoretic Mobilities of Large Organic Ions in Nonaqueous Solvents: Determination by Capillary Electrophoresis in Propylene Carbonate, N,N-dimethylformamide, N,N,-dimethylacetamide, Acetonitrile and Methanol,” Electrophoresis , Vol.23, No.3, pp.375-382, 2002.

[14]Effenhauser, C. S., Paulus, A., Manz, A., and Widmer, H. M., “High-Speed Separation of Antisense Oligonucleotides on a Micromachined Capillary Electrophoresis Device,” Analytical Chemistry, Vol.66, No.18, pp.2949-2953, 1994.
[15]Burggraf, N., Manz, A., Verpoorte, E., Effenhauser, C. S., and , H. M., de Rooij, N. F., “A Novel Approach to Ion Separations in Solution: Synehronized Cyclic. Capillary Electrophoresis (SCCE),” Sensors and Actuators. B, Vol.20, No.2/3, pp.103-110, 1994.

[16]Jacobson, S. C., Koutny, L. B., Hergenroder, R., Moore, A. W., and Ramsey, J. M., “Microchip Capillary Electrophoresis with an Integrated Postcolumn Reactor,” Analytical Chemistry, Vol.66, No.20, pp.3472-3476, 1994.
[17]Culbertson, C. T. and Jorgenson, J. W., “Flow Counterbalanced Capillary Electrophoresis,” Analytical Chemistry, Vol.66, No.7, pp.955-962, 1994.
[18]Rawool, A. S. and Mitra S. K., “Numerical Simulation of Electroosmotic Effect in Serpentine Channels,” Microfluidics and Nanofluidics, Vol.2, pp.261-269, 2006.
[19]Rice, C. I. and Whitehead, R., “Electrokinetic Flow in a Narrow Capillary,” The Journal of Physical Chemistry, Vol.69, No.11, pp.4017-4024, 1965.
[20]Andreev, V. P. and Lisin, E. E., “On the Mathematical Model of Capillary Electrophoresis”, Chromatographia, Vol.37, No.3/4, pp.202-210, 1993.

[21]Yang, C., Li, D., and Masliyah, J. H., “Modeling Forced Liquid Convection in Rectangular Microchannels with Electrokinetic Effects”, International Journal of Heat and Mass Transfer, Vol.41, No.24, pp.4229-4249, 1998.
[22]Hu, L., Harrison, J. D., and Masliyah, J. H., “Numerical Model of Electrokinetic Flow for Capillary Electrophoresis,” Journal of Colloid and Interface Science, Vol.215, No.2, pp.300-312, 1999.
[23]Dutta, P. and Beskok, A., “Analytical Solution of Combined Electroosmotic /Pressure Driven Flows in Two-Dimensional Straight Channels: Finite Debye Layer Effects,” Analytical Chemistry, Vol.73, No.9, pp.1979-1986, 2001.
[24]Ren, L. and Li, D., “Electroosmotic Flow in Heterogeneous Microchannels,” Journal of Colloid and Interface Science, Vol.243, No.1, pp.255-261, 2001.
[25]Patankar, N. A. and Hu, H. H., “Numerical Simulation of Electroosmotic Flow,” Analytical Chemistry, Vol.70, No.9, pp.1870-1881, 1998.
[26]Tang, G Y., Yang, C. J., and Gong, H. Q. “Modeling of Electroosmotic Flow and Capillary Electrophoresis with the Joule Heating Effect: The Nernst-Planck Equation versus the Boltzmann Distribution,” Langmuir, Vol.19, 2, pp.10975-10984, 2003.
[27]Hiemenz, P. C., Principles of Colloid and Surface Chemistry, Marcel Dekker, New York, 1986.
[28]Hunter, R. J., Zeta Potential in Colloid Science: Principles and Applications, Academic Press, New York, 1981.
[29]Chee, G. L. and Wan, T. S. M., “Reproducible and High-speed Separation of Basic Drugs by Capillary Zone Electrophoresis,” Journal of Chromatography, Vol.612, No.1, pp.172-177, 1993.
[30]Attard, P., Antelmi, D., and Larson, I., “Comparison of the Zeta Potential with the Diffuse Layer Potential from Charge Titration,” Langmuir, Vol.16, No.4, pp.1542-1552, 2000.
[31]Dawson, J. M., “Particle Simulation of Plasma,” Reviews of Modern Physics, Vol.55, No.2, pp.403-447, 1983.
[32]Hockney, R. W. and Eastwood, J. W., Computer Simulation Using Particles, Institute of Physics Publishing Ltd., 1988.
[33]Birdsall, C. K. and Langdon, A. B., Plasma Physics via Computer Simulation, McGraw-Hill, New York, pp.20-22, 1985.
[34]Spirkin, A. M., A Three-dimensional Particle-in-Cell Methodology on Unstructured Voronoi Grids with Applications to Plasma Microdevices. Ph.D. Dissertation, Mechanical Engineering, Worcester Polytechnic Institute, Massachusetts, USA, 2006.
[35]Courant, R., ”Variational Method for the Solutions of Problems of Equilibrium and Vibrations,” Bull. Amer. Math. Soc., Vol.49, 1943.
[36]Turner, M. J., Clough, R. W., Martin, H. C., and Topp, L. C., ”Stiffness and Deflection Analysis of Complex Structures,” J. Aeronent Sci. Vol.23, No.9, 1956.
[37]Clough, R. W., “The Finite Element Method in Plane Stress Analysis,” Pro. 2nd ASME Conference on Electronic Compution, Pitsburgh, Pa., Sept. 1960.
[38]Besseling, J. F., “The Complete Analogy Between the Matrix Equations and the Continuous Field Equations of Structural Analysis,” International Symposium on Analogue and Digital Techniques Applied to Aeronautics, Liege, Belgium, 1963.
[39]Melosh, R. J., “Basis for Derivation of Matrics for the Direct Stiffness Method,” AIAA., Vol.1, 1963.
[40]Jones, R. E., “A Generalization of the Direct Stiffness Method of Structural Analysis,” AIAAJ., Vol.2, 1964.
[41]Lewis, R. W., Fundamentals of the Finite Element Method for Heat and Fluid Flow. John Wiley & Sons., 2004.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top