(3.232.129.123) 您好!臺灣時間:2021/02/26 20:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:羅宇智
研究生(外文):Yu-Chih Lo
論文名稱:應用可視錐與向量分析於車銑複合加工可製造性初步評估系統之發展
論文名稱(外文):Development of Manufacturability Preliminary Evaluation System of Mill-Turn Machining Utilizing Visibility Cone and Vector Analysis
指導教授:李榮顯李榮顯引用關係
指導教授(外文):Rong-Shean Lee
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:71
中文關鍵詞:線性加工行程旋轉角向量分析可製造性評估車銑複合工具機構形
外文關鍵詞:vector analysisrotating anglemanufacturability evaluationlinear traverse rangemachine tool configurationmill-turn
相關次數:
  • 被引用被引用:2
  • 點閱點閱:186
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:39
  • 收藏至我的研究室書目清單書目收藏:0
進行多軸曲面加工時,複合化工具機的構形會影響到產品的可加工性,以往加工曲面時選擇複合化工具機的構形主要是仰賴工程師的經驗,而隨著複合化工具機構形種類越來越複雜,尤其是近年來車銑複合工具機的問世,工程師僅憑著經驗法則來判斷已顯得十分的不足。若因經驗不足而選擇錯誤之構形,將導致生產時程延誤與成本增加。為使工程師能正確的選擇車銑複合工具機構形,本研究發展一套車銑複合可製造性初步評估系統,以助進行車銑複合工具機構形選擇以及對給定的工件幾何評估所需之加工旋轉角與線性行程。
本文利用向量分析法對車銑複合工件之曲面資料進行分析,將車銑複合加工製程之幾何特徵分成三類,分別為平面、軸對稱曲面及自由曲面。使用向量分析法對平面與軸對稱曲面進行幾何資料分析評估,可評估出所需之車銑複合工具機構形及計算旋轉軸角度範圍與加工行程範圍。自由曲面則利用可視錐理論配合車銑複合工具機之刀軸方位,可評估出適合之車銑複合工具機構形及旋轉軸角度範圍與加工行程範圍。將上述分析法則加以整合歸納,即為本論文的車銑複合可製造性初步評估法則。最後本文以三個不同特徵的車銑複合加工件進行實例分析,並利用商用軟體來進行評估結果驗證。
The configuration of the multi-task machine tool influences the manufacturability of the product during surface machining; therefore, choosing correct configuration is an important task. Traditional methods of choosing the configuration of multi-task machine tool for surface machining depend on the experiences of manufacturing engineers. Because the multi-task machine tools have become more complex especially for turn-mill machines, it is not enough for engineers to use their own experiences to make the configuration selection. If the experience rule cannot work, it causes the production delay and the cost increase. In order to assist the engineers to select the multi-task machine tool configuration more accurately, this study develops a manufacturability evaluation system to evaluate the required rotating angle and linear traverse range for the mill-turn machine tools for a given workpiece geometry.
In this research, the vector analysis is used for analyzing surface data points of the mill-turn part, the geometric features can be classified into three categories. The necessary rotating angle and traverse range of the plane face and symmetric surface are evaluated by vector analysis. The necessary rotating angle and traverse range of free surface are evaluated by visibility cone and tool orientation of turn-mill machine. Above-mentioned methods are integrated into to the manufacturability preliminary evaluation rules which be proposed in this thesis. Finally, taking three different part as examples, the manufacturability preliminary evaluation is verified by the simulation results generated from a commercial software.
總目錄
中文摘要 I
英文摘要 II
誌謝 IV
總目錄 V
表目錄 VIII
圖目錄 IX
符號說明 XII
第一章 前言 1
1-1 概述 1
1-2 文獻回顧 2
1-3 研究目的與範疇 5
第二章 系統核心理論 6
2-1 可視性與可視錐理論 6
2-1-1 可視性理論 6
2-1-2 可視錐理論 7
2-1-3 產生曲面可視錐的演算法 8
2-2 車銑複合工具機構型表示 10
2-2-1 工具機構造碼與形狀創成函數探討 10
2-2-2 複合化工具機之構型分類 12
2-3 IGES 資料檔介紹 16
2-3-1 IGES 檔案格式介紹 16
2-3-2 128 Rational B-Spline Surface 圖元介紹 21
2-4利用空間幾何性質於平面與曲面分析 24
第三章 可製造性初步評估演算法 27
3-1 曲面點資料 29
3-2 平面與曲面辨識分析法 30
3-3 平面分析演算法 43
3-4 曲面分析演算法 36
3-5 對稱曲面分析演算法 39
3-6 自由曲面分析演算法 42
3-7 旋轉角分析演算法 46
3-8 線性行程分析 48
第四章 可製造初步評估系統分析實例 51
4-1 車銑複合可製造性初步評估系統介紹 51
4-2 分析實例一 55
4-2-1 評估系統分析結果 56
4-2-2 Vericut實體切削模擬驗證 58
4-3 分析實例二 60
4-3-1 評估系統分析結果 60
4-3-2 Vericut實體切削模擬驗證 61
4-4 分析實例三 63
4-4-1 評估系統分析結果 63
4-4-2 Vericut實體切削模擬驗證 65
第五章 結論與建議 66
5-1 結論 66
5-2 建議 67
參考文獻 68
自述 71
參考文獻

1.Balasubramaniam, M., P. Laxmiprasad, S. Sa and Z. Shaikh, “Generating 5-axis NC Roughing Paths Directly from a Tessellated Representation”, Computer-Aided Design, Vol.32, pp.261-277 (2000).
2.Chen, L. L., S. Y. Chou and T. C. Woo, “Partial Visibility for Selecting a Parting Direction in Mold and Die Design”, Journal of Manufacturing System, Vol.14, No.5, pp.319-330 (1995).
3.Kang, J. K. and S. H. Suh, “Machinability and Set-up Orientation for Five-Axis Numerically Controlled Machining of Free Surfaces”, The International Journal of Advanced Manufacturing Technology, Vol.13, pp.311-325 (1997).
4.Kweon, S. and D. J. Medeiros, “Part Orientations for CMM Inspection Using Dimensioned Visibility Maps”, Computer-Aided Design, Vol.30, NO.9, pp.741-749 (1998).
5.Lee Yuan-Shin, Chuang-Jang Chiou, “Unfolded projection approach to machining non-coaxial parts on mill-turn machine” ,Computers in Industry Vol.39 ,pp.147–173(1999)
6.Reshetov, D. N. and V. T. Portman, “Accuracy of Machine Tool”, ASME Press, pp.25-60 (1988).
7.Suh, S. H. and J. J. Lee, “Five-Axis Part Machining With Three-Axis CNC Machine and Indexing Table”, ASME Trans. Journal of Manufacturing Science and Engineering, Vol.120, pp.120-128 (1998).
8.Tseng, Y. J. and S. Joshi, “Determining Feasible Tool-Approach Directions for Machining Bezier Curves and Surfaces”, Computer-Aided Design, Vol. 23, No.5, pp.367-379 (1991).
9.Tang, K., T. Woo and J. Gan, “Maximum Intersection of Spherical Polygons and Workpiece Orientation for 4- and 5-Axis Machining”, Journal of Mechanical Design, Vol.114, pp.477-485 (1992).
10.Tseng Y. -J.; S. B. Joshi, “Recognition of interacting rotational and prismatic machining features from 3-D mill-turn parts”, International Journal of Production Research, vol. 36, no. 11, pp.3147-3165(1998)
11.Vafaeesefat, A. and H. A. Elemaraghy, “Automated Accessibility Analysis and Measurement Clustering for CMMs”, International Journal of Production Research, Vol.38, No.10, pp.2215-2231 (2000).
12.Woo, T. C. and B. F. von Turkovich, “Visibility Map and Its Application to Numerical Control”, Annals of the CIPP, Vol.39, pp.451-454 (1990).
13.Woo, T. C., “Visibility Maps and Spherical Algorithms”, Computer-Aided Design, Vol.26, No.1, pp.6-16 (1994).
14.THE MILLTURNS M40-G, WFL MillTurn Technologies, http://www.wfl.at/
15.Yip-Hoi Derek and Debashish Dutta, “Finding the maximum turnable state for mill/turn parts”, Computer-Aided Design. Vol. 29, No. 12, pp. 879-994( 1997)
16.Yin, Z. P., H. Ding and Y. L. Xiong, “Visibility Theory and Algorithms with Application to Manufacturing Processes”, Int. Journal of Production Research, Vol.38, No.13, pp.2891-2909 (2000).
17.佘振華,“空間凸輪五軸加工數值控制程式設計系統之研究”, 博士論文, 國立成功大學機械工程研究所, 民國86年。
18.李政男,“應用包絡元件於多軸加工數值控制程式設計系統之研究”,博士論文,國立成功大學機械工程研究所,民國90年。
19.吳維軒,“五軸曲面加工時工具機構型判斷之研究”,碩士論文,國立成功大學機械工程學研究所,民國95年。
20.吳錫章,“非正交型車銑複合虛擬工具機運動模擬系統之發展”,碩士論文,國立成功大學機械工程學研究所,民國96年。
21.吳文義,“鞋楦曲面加工系統之研究”,碩士論文,大葉大學機電自動化研究所,民國96年。
22.洪智偉,“車銑複合工具機之數值控制程式開發”,碩士論文,大葉大學機電自動化研究所,民國96年。
23.許家瑜, “於多軸曲面加工時刀軸方位與刀具尺寸限制之研究”,碩士論文,國立成功大學機械工程研究所,民國92年。
24.陳譽文,“五軸CNC曲面加工原理之研究”,碩士論文,國立中正大學機械工程研究所,民國88年。
25.陳耀乾,”以可視錐分析工件夾持方位及多軸工具機構型之研究”,碩士論文,國立成功大學機械工程研究所,民國91年7月。
26.陳家樂, “永不懈怠地追求高附加生產價值-談複合化工具機的市場與發展機會”, 機械工業雜誌283 期, pp. 27-29, October,2006.
27.曾明陽,“曲面加工多軸銑床構型與行程範圍之初步評估系統”,碩士論文,國立成功大學機械工程學研究所,民國96年。
28.張俊毅,”於多軸曲面加工時以可視錐分析做工具機及刀具尺寸限制分析”, 碩士論文,國立成功大學機械工程研究所,民國92年6月。
29.鄭文嘉,“複合工具機與關鍵零組件發展利基及模式探討”,工業技術研究院產業經濟與趨勢研究中心,台灣,pp.3-1~pp.3-7,2006.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔