# 臺灣博碩士論文加值系統

(3.229.142.104) 您好！臺灣時間：2021/07/27 05:31

:::

### 詳目顯示

:
 Twitter

• 被引用:2
• 點閱:96
• 評分:
• 下載:0
• 書目收藏:0
 本文引用虛擬溫度粒子概念，提出一個全新Lagrangian法方式處理能量方程式，並結合隨機走步式之渦流法模擬平面熱噴流以及執行熱流耦合模擬平面熱羽流。由於熱噴流與熱羽流同時擁有流場與溫度場的特性，因此本文主要研究對象為流場與溫度場之間的比較，以及溫度場對於流場之影響。　　首先驗證無熱流耦合之熱噴流特性。由文獻可知，隨機走步式之渦流法已成功模擬出層流及紊流流場之特性，而在本文模擬結果顯示溫度場之特性亦與文獻的實驗結果一致；此外，在不同雷諾數(Reynolds number)、不同普朗特數(Prandtl number)之下，流場與溫度場分布的差異，發現其與參數之物理意義相符合；之後再討論熱噴流場的擾動量，亦發現具有良好的相似性，並且可以看出能量耗散之現象。因此，隨機走步式之渦流法適用於同時具有流場及溫度場之熱噴流。　　最後，為了觀察熱量所驅動的流場運動情形是否合理，也就是溫度場與流場之間的耦合，因此將模擬流場由熱噴流改為熱羽流，如此才能完整的觀察流場，並且討論流場之演進以及革拉秀夫數(Grashof number)對於流場演進之影響。
 A new Lagrangian scheme involved the virtual temperature particles is presented to deal with the energy equation. The thermal jet is simulated by vortex method with random walk, and heat-flow coupling is used for simulating the thermal plume. Because the thermal jet and thermal plume have properties of the thermal field and flow field simultaneously, we investigate the comparison between the thermal field and flow field, and the effects of thermal field on flow field.At first, we investigate the properties of thermal jet without heat-flow coupling. In previous work, the properties of laminar and turbulent flow field can be simulated by the vortex method with random walk. In this study, the properties of thermal field also show in good agreement with those of available literatures. Then the investigation of the difference between flow field and thermal field with different Reynolds numbers and Prandtl numbers are presented. And the results display the same characteristics with physical parameters. The fluctuation of thermal jet is investigated, and the numerical results have good similarities. In addition, the temperature fluctuation also show that energy dissipation. Therefore, the flow field and thermal field of thermal jet can be simulated by the vortex method with random walk.Finally, for observing the properties of the flow field, thermal plume substitutes for thermal jet. Investigation of the development of flow field and effects of Grashof number on flow field are shown.
 中文摘要..................................................I英文摘要.................................................II致謝....................................................III目錄.....................................................IV圖索引...................................................VI符號說明...............................................VIII第一章　緒論..............................................11-1　研究動機與目的.......................................11-2　文獻回顧.............................................21-3　本文架構.............................................6第二章　研究方法..........................................72-1　物理模型.............................................72-1-1　基本假設與統御方程式...............................72-1-2　溫度場分布方式.....................................92-2　數值方法............................................102-2-1　計算流程..........................................102-2-2　對流項處理過程....................................112-2-3　黏滯擴散項處理過程................................142-2-4　邊界處理..........................................162-2-5　浮力對流場之影響..................................19第三章　結果與討論.......................................223-1　熱噴流..............................................223-1-1　虛擬溫度粒子煙線..................................233-1-2　速度、溫度相似性..................................253-1-2　溫度擾動量分析....................................283-2　熱羽流..............................................293-2-1　流場與溫度場之演進................................293-2-2　革拉秀夫數對流場、溫度場之影響....................33第四章　結論與未來展望...................................354-1　結論................................................354-2　未來展望............................................37參考文獻.................................................38圖表彙整.................................................44
 [1] Forthmann, E., “Uber Turbulente Strahlausbreitung,” Ing. Arch., Vol. 5, pp. 42-54, 1934.[2] Miller, D. R. and Comings, E. W., “Static Pressure Distribution in the Free Turbulence Jet,” J. Fluid Mech., Vol. 3, pp. 1-16, 1957.[3] Batchelor, G. K. and Gill, A. E., ”Analysis of the stability of axisymmetric jets,” J. Fluid Mech., Vol. 14, pp. 529-551, 1962.[4] Cohen, J. and Wygnanski, I., ” The evolution of instabilities in the axisymmetric jet. Path 1. The linear growth of disturbances near the nozzle,” J. Fluid Mech., Vol. 176, pp. 191-219, 1987.[5] Knystautas, R., “The Turbulent Jet from a Series of Holes in Line,” Aero.Quart., Vol. 15, pp. 1-28, 1964.[6] Brown, F. K. and Roshko, A., “On Density Effect and Large Structure in Turbulence Mixing Layers,” J. Fluid Mech., Vol. 64, pp. 775-816, 1974.[7] Crow, S. C. and Champagme, F. H., “Orderly Structure in Jet Turbulence,” J. Fluid Mech., Vol. 48, pp. 547-591, 1970.[8] Winant, C. D. and Browand, F. K., “Vortex Pairing-the Mechanism of Turbulent Mixing-Layer Growth at Moderate Reynolds Number,” J. Fluid Mech., Vol. 63, pp. 237-255, 1974.[9] Thomas, F. O., “Structure of Mixing Layers and Jets,” Applied Mechanics Reviews, Vol. 44, No. 3, pp. 119-150, 1991.[10] Yoshifumi, O., “Simulation of Heat-Vortex Interaction by the Diffusion Velocity Method,” ESAIM, Vol. 7, pp. 314-324, 1999.[11] Wygnanski, I. and Fiedler, H. E., ”The Two-Dimensional Mixing Region,” J. Fluid Mech., Vol. 41, pp. 327-361, 1970.[12] Hinze, JO, ”Turbulence,” McGraw-Hill, New York, pp 534-545, 1987.[13] Aouissi, M., Bounif, A. and Bensayah, K., ”Scalar Turbulence Model Investigation with Variable Turbulent Prandtl Number in Heated Jets and Diffusion Flames,” Heat and Mass Transfer, 2007.[14] Turner, J. S., “Buoyant Plumes and Homeland Security,” Annual review of fluid mechanics., Vol. 1, pp. 29-44, 1969.[15] List, E. J., ”Turbulent Jets and Plumes,” Annual review of fluid mechanics., Vol. 14, pp. 189-212, 1982.[16] Papanicolau, P. N. and List, E. J., “Statistical and Spectral Properties of Tracer Concentration in Round Buoyant Jets,” International journal of heat and mass transfer, Vol. 30, pp. 2059-2071, 1989.[17] Papanicolau, P. N. and List, E. J., “Investigations of Round Velocity Turbulent Buoyant Jets,” J. Fluid Mech., Vol. 195, pp. 341-391, 1988.[18] Dai, Z., Tseng, L. K. and Faeth, G. M., “Structure of Round Fully Developed, Buoyant Turbulent Plumes,” J. Heat Transfer, Transactions ASME, Vol. 116, no. 2, pp. 409-417, 1994.[19] Agrawal, A. and Prasad, A. K., “Integral Solution for the Mean Flow Profiles of Turbulent Jets, Plumes and Wakes,” J. Fluids Eng., Vol. 125, pp. 813-822, 2003.[20] Elicer-Cortes, J. C., Fuentes, J., Valenica, A., and Baudet, C., “Experimental Study of Transition to Turbulence of a Round Thermal Plume by Ultrasound Scattering,” Experimental Thermal and Fluid Science, Vol. 20, pp. 137-149, 2000.[21] Cetegen, B. M., Dong, Y. and Soteriou, M. C., “Experiment on Stability and Oscillatory Behavior of Planar Bouyant Plumes,” Physics of Fluid, Vol. 10, No. 7, pp. 1658-1665, 1998.[22] Zhou, X., Luo, K. H., and Williams, J. J. R., “Large-Eddy Simulation of a Turbulent Forced Plume,” European Journal of Mechanics B/Fluids, Vol. 20, pp. 233-254, 2001.[23] Basu, A. J., and Narasimha, R., “Direct Numerical Simulation of Turbulent Flow with Cloud-Like off-source Heating,” J. Fluid Mech., Vol. 385,pp. 199-228, 1999.[24] Pozrikidis, C., ”Introduction to Theoretical and Computational Fluid Dynamics,” Oxford University Press, 1997.[25] Cottet, G. H. and Koumoutsakos, P. D., ”Vortex Method: Theory and Practices,” Cambridge University Press, 2000.[26] Inoue, O., ”Vortex simulation of a turbulent mixing layer,” AIAA J., Vol. 23, no. 3, pp. 367-373, 1985.[27] Hsu, C. C., ”Vortex method investigations on dynamic behaviors of forced turbulent mixing layer and planar jet,” Ph.D. Dissertation, Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan, Taiwan, 1994.[28] Smith, P. A. and Stansby, P. K., “A Efficient Surface Algorithm for Random-Particle Simulation of Vorticity and Heat Transport,” J. Comp. Phy., Vol. 81, pp. 349-371, 1989.[29] Ogami, Y., “Simulation of Heat-Vortex Interaction by the Diffusion Velocity Method,” Proceedings of Third International Workshop on Vortex Flows and Related Numerical Methods, Vol. 7, pp. 314-324, 1999.[30] Chorin, A. J., “Numerical Study of Slightly Viscous Flow,” J. Fluid Mech., Vol.57, pp. 785-796, 1973.[31] Krasny, R., “Numerical Simulation of Vortex Sheet Evolution,” Fluid Dynamics Research, Vol. 3, pp. 93-97, 1988.[32] Sato, H. and Sakao, F., “An Experimental Investigation of the Instability of a Two-Dimensional Jet at Low Reynolds Numbers,” J. Fluid Mech., Vol. 20, pp. 337-352, 1964.[33] 王健彰, “以渦流法探討微粒子在間歇噴流之擴散,” 國立成功大學機械工程研究所碩士論文, 2007.[34] Namer and Otiigen, M. V., “Velocity Measurements in a Plane Turbulent Air Jet at Moderate Reynolds Numbers,” Experiments in Fluids, Vol. 6, pp. 387-399, 1988.[35] Chandrasekhara, “Study of Vertical Plane Turbulent Jets and Plumes,” Ph.D. Dissertation, UMI, 1983.[36] Reichardt, H., “Gesetzmassigkeiten Der Freien Turbulenz,” VDI-Forschungsheft, Vol. 414, 1942.[37] Kim et al., “Direct numerical simulations of a rapidly expanding thermal plume; structure and entrainment interaction” J. Fluid Mech., Vol. 604, pp. 99-123, 2008.[38] 梁家智, “激擾作用下氣-固兩相噴流之數值研究,” 國立成功大學機械工程研究所碩士論文, 2006.[39] 許挣強, 洪振益, 蔡朝安, 王健彰, ”以LAGRANGIAN方式模擬探討定溫邊界下平面羽流之初始發展過程,” 第15屆三軍官校基礎學術研討會, 2008.
 電子全文
 國圖紙本論文
 連結至畢業學校之論文網頁點我開啟連結註: 此連結為研究生畢業學校所提供，不一定有電子全文可供下載，若連結有誤，請點選上方之〝勘誤回報〞功能，我們會盡快修正，謝謝！
 推文當script無法執行時可按︰推文 網路書籤當script無法執行時可按︰網路書籤 推薦當script無法執行時可按︰推薦 評分當script無法執行時可按︰評分 引用網址當script無法執行時可按︰引用網址 轉寄當script無法執行時可按︰轉寄

 1 以渦流法探討微粒子在間歇噴流之擴散 2 激擾作用下氣-固兩相噴流之數值研究 3 以Lagrangian方式模擬探討平面熱噴流之動力特性 4 以渦流法模擬衝擊噴流之研究

 無相關期刊

 1 利用整流天線以及微機電線圈設計遠場與近場的無線傳能系統 2 一個基於Kerberos之SIP伺服端與客戶端單一簽入系統 3 以建立使用者請求模型為基礎的網站入侵偵測系統之設計與實作 4 在無線多段網路下對即時群組通訊最小化訊框長度排程之研究 5 在IPv6網路執行安全與效率傳輸之效率安全通道設計 6 IEEE 802.15.3 MAC在802.11上的模擬 7 中國大陸失業問題研究 8 反應式共濺鍍鈦-矽-氮薄膜之微結構與機械性質研究 9 往復移動式表面加熱之導螺桿熱傳分析 10 光通訊分碼多重擷取技術及光纖微波擷取網路之非線性效應的探討 11 應用於奈米磁粒之半橋串聯諧振式雙頻耦合熱療加熱系統 12 新型可規劃對數型數位層級感測器 13 使用輪廓特質應用在3D圖片搜尋之研究 14 可變動調頻電刺激系統及應用於生理適應性之評估 15 以心率變異評估『可程式控制-電腦輔助教學系統』對學生反應之研究

 簡易查詢 | 進階查詢 | 熱門排行 | 我的研究室