跳到主要內容

臺灣博碩士論文加值系統

(3.235.227.117) 您好!臺灣時間:2021/08/01 23:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:單煦
研究生(外文):Hsu Shan
論文名稱:全場全值域量測雙折射材料之主軸角度及相位延遲量
論文名稱(外文):Full-Field Measurements in the Principal Axis and Phase Retardation of Linear Birefringent Materials in Full-Scale Range
指導教授:羅裕龍
指導教授(外文):Yu-Lung Lo
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:76
中文關鍵詞:雙折射材料電荷耦合元件 (CCD)相位延遲主軸角度外差干涉儀
外文關鍵詞:birefringentheterodyne interferometersprincipal axischarge-coupled device (CCD)phase retardation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:254
  • 評分評分:
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
在近代光學科技中雙折射晶體是一種最常見的光學元件之一諸如波片、雙折射稜鏡、液晶…等等。一般而言,其光學參數包含有主軸角度、相位遲延、折射率及厚度…性等參數,這些參數在光學工業上及生物醫學上均佔有相當程度上的地位,然而能精確地解析出其光學參數對於應用上是相當重要的。在過去,外差干涉量測系統常建構在單點量測,若要量測待測物的表面資訊,須經過相當長的時間來反覆量測。因此本實驗將提出二種全場式光學外差干涉系統配合影像處理演算法,且高複雜度可程式控制器(Complex Programmable Logic Device, CPLD)改變單點量測系統的電控架構,來進行光學元件的主軸角度、相位遲延等參數的全場光學即時測量及全值域測量。因為此量測技術是運用共路徑外差雙頻(Heterodyne),可避免週期性誤差且對於雜訊免疫力及靈敏度的提高也有很大的幫助,所以有高精密度的量測優勢。此外本文分別利用四分之一波片和巴比鎳補償器為待測物,均證實了此系統對於具雙折射性物質的可行性,且有直接容易的影像處理演算法、簡潔的光學架構及不受光強擾動影響等特點。
In this paper, two novel heterodyne interferometers designed for measuring the principal axis and phase retardation of the linear birefringent materials in full-field are proposed. By using a complex programmable logic device (CPLD) and a charge-coupled device (CCD), integrating buckets with multiple frames are achieved. In our first systems, we can achieve to measure the principal axis and phase retardation in full field simultaneously, but the dynamic range of phase retardation measurement is only up to 90° and that of the principal axis angle measurement is up to 180° in the full range.
The second system is designed to achieve the full-scale and full-field measurement by sequentially measurement. The dynamic range of the principal axis and phase retardation of sequential measurement is both in full-scale range. In the two measurement systems, the noises induced by environmental disturbance and direct current component of the output light intensity can be reduced because of the elimination in the algorithm. Also, the method we proposed can determine the principal axis of the uni-axial material is fast axis or slow axis from the configuration arrangement.
Abstract II
中文摘要 IV
致謝 V
Chapter 1 Introduction 1
1.1 Preface 1
1.2 Review of the Full-Field Measurements 1
1.3 Destinations and Motivations of the Research 4
Chapter 2 Birefringence Materials 8
2.1 Preface 8
2.2 The Optical Properties of Birefringence 8
2.3 Phase Retardation 12
Chapter 3 The Heterodyne Interferometer 19
3.1 Preface 19
3.2 Principle of Traditional Interference 19
3.3 Basic Theory of Heterodyne Interference 20
3.4 Common-Path Heterodyne Interferometry 22
3.5 The Modulating Technique of Electro-Optic Modulator 22
3.5.1 Electro-Optic Effect 24
3.5.2 Electro-Optic Modulation 24
3.5.2.1 Amplitude Modulation 25
3.5.2.2 Phase Modulation 29
3.6 Calibration the axis alignment of an EO modulator 30
Chapter 4 Complex Programmable Logic Device (CPLD) 36
4.1 Preface 36
4.2 Complex Programmable Logic Device (Max 7128s) 36
4.3 Methodology for using CPLD 38
4.4 CCD Arrangement 39
Chapter 5 the Basic Optic arrangement and Image processing Algorithms for the Full-Field Measurements 46
5.1 The First Configuration of the Heterodyne Interferometer in Simultaneous Measurements 46
5.2 The Second Configuration of the Heterodyne Interferometer in Sequent Measurements 47
5.3 Algorithm of Simultaneous Measurement 48
5.4 Algorithm of Sequential Measurement for Full Scale Range 51
Chapter 6 Experimental Setup and Results 55
6.1 Experimental Setup 55
6.2 Results of Experimental 55
6.2.1 Experimental Results of Principal Axis 56
6.2.2 Experimental Results of Phase Retardation for Simultaneous Measurements 56
6.2.3. Experimental Results of Phase Retardation for sequential measurements 56
Chapter 7 Discussions and Conclusions 66
7.1 The Sources of Experimental Errors 66
7.1.1 Sensitivity Analysis for two configurations 66
7.1.2 Effects of Orientation Errors 67
7.1.3 Interference Fringe Effect for two configurations 68
7.2 Conclusions 71
References 72
Autobiography 76
Aguanno, M. V., Lakestani, F., Whelan, M. P. and Connelly, M. J., “Single pixel carrier based approach for full field laser interferometry using a CMOS-DSP camera,” Proc. of SPIE, Vol. 5251, pp. 304-312, 2004.

Akiba, M., Chan, K. P., and Tanno, N., “Real-time, micrometer depth resolved imaging by low-coherence reflectometry and a two-dimensional heterodyne detection technique,” Jpan. J. Appli. Phys., Vol. 39, L11947-L1196, 2000.

Akiba, M., Chan, K. P. and Tanno, N., “Full-field optical coherence tomography by two-dimensional heterodyne detection with a pair of CCD cameras,” Opt. Lett., Vol. 28, pp. 816-818, 2003.

Chou, C. Shyu, Huang, Y. C. and Yuan, C. K., “Common-path optical heterodyne profilometer: a configuration,” Applied Optics, Vol. 37, No.19, pp. 4137-4142, 1998.

Chou, C. and TENG H.K., ”Linear Birefringence Measurement with a Differential-phase Optical Heterodyne Polarimeter,” Jpn. J. Appl. Phys. Vol. 41 pp. 3140–3144, 2002

Clerc, F. L., Collot, L., and Gross, M., “Numerical heterodyne holography with two-dimensional photodetector arrays,” Opt. Lett., Vol. 25, pp. 716-718, 2000.

Dubois, A., Vabre, L., and Boccara, A.C., “Sinusoidally phase-modulated interference microscope for high-speed high-resolution topographic imagery,” Opt. Lett., Vol. 26, pp. 1873-18758, 2001.

Gazalet, M. G., Ravez, M., Haine, F., Bruneel, C., and Bridoux, E., “Acousto-optic low frequency shifter,” Appl. Opt., Vol. 33, pp. 1293-1298, 1994.

Gelmini, E., Minomi, U., and Docchio, F., “Tunable, double-wavelength heterodyne detection interferometer for absolute distance measurement,” Opt. Lett., Vol. 19, pp. 213-215, 1994.


Haus, H. A., Waves and fields in optoelectronics, Prientice-Hall, Inc., Englewood Cliffs, New Jersey, Ch. 12, 1984.
.
Hou, W., and Wilkening, G., “Investigation and compensation of nonlinearity of heterodyne interferometers,” Pre. Eng. Vol. 14 No. 2, pp. 91-98, 1992.

Kemp, J. C., “Piezo-optical birefringence modulators: new use for a long known effect,” J. Opt. Sci. Am., Vol. 59, pp. 950-954, 1969.

Kothiyal, M. P. and, Delisle, C., “Optical frequency shifter for heterodyne interferometry using coumterrotating wave plates,” Opt. Lett., Vol. 9, pp. 319-321, 1984.

Kurzynowski, P. and Wozniak, W. A., “Phase retardation measurement in simple and reverse senarmont compensators without calibrated quarter wave plates,” Optik, Vol. 113, pp. 51-53, 2002.

Lin, J. F. Liao, T. T. Lo, Y. L., and Lee, S.Y., “The Optical Linear Birefringence Measurement Using a Zeeman Laser,” Optics Communications, Vol. 274, pp. 153-158, 2007.

Lo, Y. L., Lin, J. F., and, S. Y., “Polariscope for the simulataneous measurement of the principle and phase retardation using two phase-locked extractions,” Applied Optics, Vol. 43, pp. 6248-6254, 2004.

Lo, Y. L. Lai, C.-H. Lin, J. F. and Hsu, P.-F., “Simultaneous absolute measurements of principal angle and phase retardation with a new common-path heterodyne interferometer,” Appl. Opt. 43, pp. 2013–2022, 2004.

Lo, Y. L. Chih, H.W. Yeh, C.Y. and Yu, T. C., “Full-field heterodyne polariscope with an image signal processing method for principal axis and phase retardation measurements,”,Appl. Opt. 45 pp. 8006-8012, 2006

Lo, Y. L., and Yu, T. C., “A polarimetric glucose sensor using a liquid-crystal polarization modulator driven by a sinusoidal signal,” Opt. Commun. 259, 40–48, 2006.

Lo, Y. L. and Jeng, Y.T., “Heterodyne polariscope for sequential measurements of the complete optical parameters of a multiple-order wave plate,” Source: Appl. Opt. 45 pp.1134-1141, 2006
Palik, E. D., Handbook of optical constants of solids III, Academic, New York, pp. 729, 1998.

Rochford, K. B., Rose, A. H., and Wang, C. M., “NIST study investigates retardance uncertainty,” Laser Focus World, pp. 223-227, 1997.

Rosenbluth, A. E. and Bobroff, N., “Optical sources of nonlinearity in heterodyne interferometers.”, Pre. Eng. Vol. 12 No. 1, pp. 7-11, 1990.

Sasaki, O., Okazaki, H., and Sakai, M., “Sinusoidal phase modulating interferometer using the integrating-bucket method,” Applied Optics, Vol. 26, No. 6, pp.1089-1093, 1987.

Su, D. C., Chiu, M. H., and Chen, C. D., “Simple two frequency laser,” Prec. Eng., Vol. 18, pp. 161-163, 1996.

Suits, J. C., “Magneto-optical rotation and ellipticity measurements with a spinning analyzer,” Rev. Sci. Instrum., Vol. 42, pp. 19-22, 1971.

Su, Y. Z., Chen S. J., and Yeh, T. L., “Common-path phase-shift interferometry surface plasmon resonance imaging system,” Optics Letters, Vol. 30, no. 12, 2005.

Suzuki, T., Yazawa, T., and Sasaki, O., “Two-wavelength laser diode interferometer with time-sharing sinusoidal phase modulation, ” Applied Optics, Vol. 41, No.10, pp. 1972-1976, 2002.

Takasaki, H., Umeda, N., and Tsukiji, M., “Stabilized transverse Zeeman laser as a new light source for optical measurement,” Appl. Opt., Vol. 19, pp. 435-441, 1980.

Kuo, W.C., Lia, K.Y., and Chou, C. “Simultaneous Measurement of Phase Retardation and Fast-Axis Angle of Phase Retardation Plate,” Jpn. J. Appl. Phys. Vol. 44 pp. 1095–1100, 2005

Wickramasingle, H. K., Laser heterodyne probes, Optical Metrology, NATO ASI series, 1987.

Wyant, J. C., “Use of an ac heterodyne lateral shear interferometer with real-time wavefront correction systems,” Applied Optics, Vol. 14, No.11, pp. 2622-2626, 1975.

Yariv, A. and Yeh, P., Optical waves in crystal, John Wiley&Sons, Inc., Ch. 4, 1984.

Yu, X., Wang, D., Wang, D., O, Y. Jian, H., Yan, Z., Dong, Y., Liao, W. and Zhao, X. S., “Micro-array detection system for gene expression products based on surface plasmon resonance imaging,” Sensors and Actuators B 91 133–137, 2003.

洪文明,白光相移干涉術之三維表面量測,交通大學光電所碩士論文,2002.

趙慧洁,外差干涉儀頻率混疊誤差分析,計量學報,Vol. 20, No.3, July 1999.

吳錦源,Eiolf Vikhagen and李世光, “影像是全像干涉術於微機電元件振動量測運用,”光訊,pp.20-23,2003.

許正治,使用外差干涉儀測量光學常數之研究,交通大學光電所博士論文,2003.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊