# 臺灣博碩士論文加值系統

(3.235.227.117) 您好！臺灣時間：2021/07/28 03:51

:::

### 詳目顯示

:

• 被引用:0
• 點閱:146
• 評分:
• 下載:0
• 書目收藏:0
 本文導入變異數觀念先建立與驗證工具機空間誤差變異模式以及藉放電加工建立與確認一套有效判認製程變異的方法，進一步結合工具機誤差模式與加工製程變異估測不同加工條件銑削後之工件幾何尺寸誤差。研究先以向量法完成XYFZ構型之三軸工具機誤差模式，再導入變異數分析法建立工具機幾何誤差變異影響空間誤差變異之模式。經由雷射對角線量測實驗，此模式成功模擬出路徑誤差範圍於兩個標準差準確包含實際量測之循圓路徑，意即具信心指出路徑95%之範圍。為建立判認製程變異方法，本研究則藉放電加工製程為研究載具。先以標準件法量測出各製程變異數據，再利用變異數分析方法考慮交互作用已可成功判認製程變異與估測機台誤差。最後，統合工具機空間誤差變異模式與製程變異分析方法，銑削工件的幾何尺寸誤差可有被估測並已經由實驗驗證。因此，對一現有機台，本研究方法可設計適當的製程參數以達到最適工件品質要求。
 By analysis of variance, variance model of spatial error of machine tool and a method for identification of process variance both have been developed and verified. Further, the geometrical dimensional error of a milling product can be estimated by combining spatial error of machine tool and processing variance under different cutting conditions.The kinematical spatial error model for XYFZ machine configuration was first investigated using vector method. Based on analysis of variance, the spatial error model considering stochastic nature then has been developed. This model was validated through experiments conducted on a milling machine with laser diagonal method as measurement. The two standard-deviation estimated is shown to excellent agreement with measured. For identification of process variance by analysis of variance, a series of EDMed experiments were performed and their results discussed to validate this method. Through considering coupling effect, the results shown that process variance and machine error can be estimated accurately by proposed.With spatial error model of machine tool and the analysis method of process variance, the investigation of milling process shown that the geometrical dimensional error of a milling product can been evaluated. For a given machine tool, the appropriate process parameters can be designed to achieve the best work quality.
 摘要 IAbstract II誌謝 III目錄 IV表目錄 VII圖目錄 VIII符號說明 XI第一章 緒論 11.1 研究動機與目的 11.2 文獻回顧 31.2.1 工具機系統性誤差 31.2.2 工具機非系統性誤差 91.2.3 製程誤差 101.3 研究範疇與論文架構 11第二章 建立工具機空間誤差與其變異模式 132.1 前言 132.2 工具機空間誤差模式 152.3 工具機空間誤差變異數分析法建立 22第三章 工具機空間誤差變異實驗與驗證 263.1 前言 263.2 對角線向量分析模式與工具機誤差模式簡化 273.3 工具機誤差量測實驗 303.4 結果分析與模擬驗證 33第四章 放電加工製程變異分析 394.1 前言 394.2 製程誤差變異模式 414.2.1 側邊過切量之變異模式 414.2.2 底部過切量之變異模式 444.3製程誤差變異實驗 454.3.1 實驗設置與流程 454.3.2 實驗結果 494.4 變異分析與討論 53第五章 結合工具機誤差與製程剛性預測產品精度 575.1 前言 575.2 產品誤差設計實驗 585.2.1 實驗設置 585.2.2 數學模式推導 635.2.3 實驗規畫與步驟 675.2.4 實驗結果 685.3 分析與討論 74第六章 結論與建議 81自述 86
 [1] Dorndorf, U., Kiridena, V., S., B., and Ferreira, P., M., Optimal budgeting of quasistatic machine tool errors, ASME Journal of Engineering for Industry, Vol. 116, pp. 42-53,1994.[2] Alexander, H., Slocum, Precision machine design, Prentice-Hall, Englewood Cliffs, New Jersey, 1992.[3] Zhang, G., Ouyang, R., Lu, B., and Hocken, R., A displacement method for machine geometry calibration, Annals of the CIRP, Vol. 37/1, pp. 515-518, 1988.[4] Zhang, G., Veale, R., Charlton, T., Borchardt, B., and Hocken, R., Error compensation of coordinate measuring machine, Annals of CIRP, Vol. 34/1, pp. 445-448, 1985.[5] Schultschik, R., The components of the volumetric accuracy, Annals of the CIRP, Vol. 25/1, pp. 223-228, 1977.[6] Tong, K., Amine Lehtihet, E., and Joshi, S., Parametric error modeling and software error compensation for rapid prototyping, Rapid Prototyping Journal, Vol. 9, pp. 301-313, 2003.[7] Zhang, G. X., and Fu, J. Y., A method for optical calibration using a grid plate, Annals of the CIRP, Vol. 49/1, pp. 339-402, 2000.[8] Jung, J. H., Choi, J. P., Lee, S. J., Machine accuracy enhancement by compensating for volumetric errors of a machine tool and on machine measurement, Journal of Materials Processing Technology 174, pp.54-66, 2004.[9] Okafor, A. C., and Ertekin, Y. M., Derivation of machine tool error models and error compensation procedure for three axes vertical machining center using rigid body kinematics, International Journal of Machine Tools & Manufacture, Vol. 40, pp. 1199-1213, 2000.[10] Heui, J. P., Young, S. K., and Joon, H. M., A new technique for volumetric error assessment of CNC machine tools incorporating ball bar measurement and 3D volumetric error model, International Journal of Machine Tools & Manufacture, Vol. 37, pp.1583-1596, 1997.[11] Lee, J. H., Liu, Y., and Yang, S. H., Accuracy improvement of miniaturized machine tool: Geometric error modeling and compensation, International Journal of Machine Tools & Manufacture, Vol. 46, pp. 1508-1516, 2006.[12] Hsieh, J. F., and Lin, P. D., Application of homogeneous transformation matrix to measurement of cam profiles on coordinate measuring machines, International Journal of Machine Tools & Manufacture, Vol. 47, pp. 1593-1606, 2007.[13] Ferreira, P. M., and Liu, C. R., A contribution to the analysis and compensation of the geometric error of a machining center, Annals of CIRP, Vol. 35/1, pp. 259-262, 1986.[14] Mou, J., and Liu, C. R., An adaptive methodology for machine tool error correction, Journal of Engineering for Industry, Vol. 117, pp. 389-399, 1995.[15] Lin., Y., and Shen, Y., Modeling of five-axis machine tool metrology models using the matrix summation approach, The International Journal of Advanced Manufacturing Technology, Vol. 21, pp. 243-248,2003.[16] Qian, G. Z., and Kazerounian, K., Statistical error analysis and calibration of industrial robots for precision manufacturing, The International Journal of Advanced Manufacturing Technology, Vol. 11, pp. 300-308, 1996.[17] Shen, Y., and Duffie, N. A., An uncertainty analysis method for coordinate referencing in manufacturing systems, ASME Journal of Engineering for Industry, Vol. 117, pp.42-48, 1995.[18] Wilhelm, R. G., Hocken, R., and Schwenke, H., Task specific uncertainty in coordinate measurement.[19] Lira, I., and Cargill, G., Uncertainty analysis of positional deviations of CNC machine tools, Precision Engineering, Vol. 28, pp. 232-239, 2003.[20] Menq, C. H., and Borm, J. H., Statistical characterization of position errors of an ensemble of robots and its applications, ASME Journal of Mechanisms, Transmissions, and Automation in Design, Vol. 111, pp. 215-222, 1989.[21] Ahn, K. G., and Cho, D. W., An analysis of the volumetric error uncertainty of a three axis machine tool by beta distribution, International Journal of Machine Tools & Manufacture, Vol. 40, pp. 2235-2248, 2000.[22] Yau, H. T., Evaluation and uncertainty analysis of vectorial tolerances, Precision Engineering, Vol. 20, pp. 123-137, 1997.[23] Kiridena, V., and Ferreira, P. M., Mapping the effects of positioning errors on the volumetric accuracy of five-axis CNC machine tools, International Journal of Machine Tools & Manufacture, Vol. 33, pp. 417-437, 1993.[24] Castro, H. F. F., Uncertain analysis of a laser calibration system for evaluating the positioning accuracy of a numerically controlled axis of coordinate measuring machine and machine tools, Precision Engineering, Vol. 32, pp. 106-113, 2008.[25] Abbe, M., Takamasu, K., and Ozono, S., Reliability on calibration of CMM, Measurement, Vol. 33, pp. 359-368, 2003.[26] Wang, S. M., and Ehmann, K. F., Measurement methods for the position errors of a multi-axis machine. Part 1: principles and sensitivity analysis, International Journal of Machine Tools & Manufacture, Vol. 39, pp. 951-964, 1999.[27] Wang, C., Laser vector measurement technique for the determination and compensation of volumetric positioning errors. Part 1: Basic theory, American Institute of Physics, 2000.[28] Chapman, M. A. V., Limitations of laser diagonal measurements, Precision Engineering, Vol. 27, pp. 401-406,2003.[29] Castro, H. F. H., and Burdekin, M., Evaluation of the measurement uncertainty of a positional error calibrator based on a laser interferometer, International Journal of Machine Tools & Manufacture, Vol.45, pp. 285-291, 2005.[30] Schwenke, H., Franke, M., and Hannaford, J., Error mapping of CMMs and machine tools by a single tracking interferometer, Annals of the CIRP, Vol. 54, pp. 475-478, 2005.[31] Elman, C. J., Electrical Discharge Machining, SME Publication, 2001.[32] Guitrau, E. B., The EDM Handbook, Hanser Gardner Publications, 1997.[33] Ho, K. H., and Newman, S. T., State of the art electrical discharge machining(EDM), International Journal of Machine Tools & Manufacture, Vol.43, pp. 1287-1300, 2003.[34] Sachez, J. A., Lopez de Lacalle, L. N., Lamikiz, A., and Bravo, U., Dimensional accuracy optimization of multi-stage planetary EDM , International Journal of Machine Tools & Manufacture, Vol.42, pp. 1643-1648, 2002.
 國圖紙本論文
 連結至畢業學校之論文網頁點我開啟連結註: 此連結為研究生畢業學校所提供，不一定有電子全文可供下載，若連結有誤，請點選上方之〝勘誤回報〞功能，我們會盡快修正，謝謝！
 推文當script無法執行時可按︰推文 網路書籤當script無法執行時可按︰網路書籤 推薦當script無法執行時可按︰推薦 評分當script無法執行時可按︰評分 引用網址當script無法執行時可按︰引用網址 轉寄當script無法執行時可按︰轉寄

 1 線切割電極附加超音波振動對碳化鎢加工特性影響之研究 2 纖維強化複合材料放電加工特性與表面完整性研究 3 航空材料在車削、銑削及磨削加工參數之最佳化研究

 無相關期刊

 1 銑削動態力與工具機空間誤差對加工件尺寸誤差之影響 2 靜態負載下五軸虛擬工具機之體積誤差分析 3 五軸虛擬工具機組裝誤差之分析與補償系統發展 4 應用遺傳演算法於五軸虛擬工具機體積誤差分配 5 加工系統誤差分析及其在加工策略上之應用 6 銑削製程工件形狀幾何變異之分析 7 以形狀創成函數探討五軸工具機組裝誤差對體積誤差之效應 8 五軸CNC工具機插補器之研究 9 應用形狀創成函數於多軸工具機構形評估系統之發展 10 奈米刮削對溝槽幾何及矽相變化之影響 11 五軸工具機牙冠加工之研究 12 五軸CNC工具機刀具路徑規劃及誤差分析 13 利用D-H修正標記法於非正交多軸工具機自動化泛用型後處理程式之發展 14 硬脆材料微銑削加工特性之探討 15 銑削加工之製程阻尼與系統動態分析

 簡易查詢 | 進階查詢 | 熱門排行 | 我的研究室