跳到主要內容

臺灣博碩士論文加值系統

(3.229.137.68) 您好!臺灣時間:2021/07/25 17:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:謝玉宸
研究生(外文):Yuh-Chern Shieh
論文名稱:超音波聲化學反應器之共振模態分析與實驗
論文名稱(外文):Modal Analysis and Experiment of Sonochemical Cell
指導教授:王逸君
指導教授(外文):Yi-Chun Wang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:122
中文關鍵詞:聲化學反應器超音波空蝕氣泡
外文關鍵詞:Sonochemical CellHigh intensity UltrasoundCavitation Bubble
相關次數:
  • 被引用被引用:3
  • 點閱點閱:351
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
目前製備奈米粉體的方式有許多種,利用壓電換能器透過變幅杆在液體中產生高強度超音波及空蝕氣泡場,空蝕氣泡破裂時對水中之材料產生衝擊波而使材料碎化的方式,也是其中ㄧ種。此種方式除了碎化材料之外,也伴隨化學反應,也就是所謂的聲化學。但此種方式的缺點在於,超音波強度最大的位置在壓電換能器變幅杆的末端,因此造成空蝕氣泡侵蝕變幅杆,不僅使其壽命減短,更造成樣品之汙染。
為改變此一缺點,本文藉由分析軟體COMSOL模擬出聲化學反應室聲場分布,設計反應室尺寸,使超音波強度最大處遠離變幅杆,其原理是找到反應室適合的聲場共振模態,不僅使該模態之共振頻率與壓電換能器共振頻率相匹配,且該模態中聲壓振幅最大之處是位於遠離變幅杆之反應室中。
在實驗上,我們先以傳統的截面積縮小形變幅杆,在輸入能量小,聲場為線性且尚未出現空蝕現象時,驗證了前述的模擬結果,但在輸入能量大時,在變幅杆末端仍會產生空蝕氣泡。因此本文提出截面積擴大形變幅杆,因變幅杆末端之截面積放大,因此在輸入能量相同時,變幅杆末端表面之每一點位移振幅較小,結果證明可在變幅杆末端遠處形成能量集中之空蝕氣泡場。
Now, there are many methods which can produce nano-powder. Using high intensity ultrasound is one way of those methods. The ultrasound is generated using a piezoelectric transducer and is amplified thru a horn emersed in liquid. Enormous cavitation bubbles are then produced around the horn tip and cause the effects of materials refined and sonochemistry. But this method will make the horn tip be quickly eroded by cavitation bubbles. The erosion not only shortens the life time of the horn, but also pollutes the sample in sonochemical cell.
In this study, we design a sonochemical cell so that the problem of the horn tip erosion can be avoided. First, we use the software COMSOL to simulate the acoustic field in the cell. The idea is to find a resonant acoustic mode in which the largest acoustic pressure is moved from the horn tip to the inside of the cell. The size of the cell must be designed so that the resonant frequency corresponding the mode matches that of the piezoelectric transducer. Once the resonant mode is achieved, very large normalized acoustic pressure can be obtained away from the horn tip. So we design a cell which the resonance properties and the acoustic pressure field modal accord with the demands.
Experimentally, we use hydrophones to measure the acoustic field in the cell and confirm the results of the simulation. A novel horn with enlarged cross-sectional area is proposed and used to excite the resonant acoustic mode. It is shown that this method can generate cavitation bubble field at a location inside the cell accord with the demands. That is, we can avoid tip erosion by cavitation bubbles also prove that the cell has a big effect to acoustic pressure field.
摘 要 I
Abstract II
致 謝 IV
目 錄 V
圖目錄 VIII
表目錄 XIII
符號說明 XIV
第一章 緒論 1
1.1 研究背景 1
1.2 文獻回顧 3
1.3 研究目的與動機 9
1.4 本文架構 10
第二章 超音波與聲化學 11
2-1 超音波理論基礎 11
2-2 超音波空蝕 14
2-3 聲化學與聲化學反應器 16
2-3-1 聲化學簡介 16
2-3-2 聲化學反應器 18
第三章 聲化學反應器之共振模態分析 31
3.1 分析軟體簡介 31
3.1.1 套裝軟體COMSOL 31
3.1.2 應力-應變分析 33
3.1.3 聲壓模組 35
3.2 變幅杆之分析設計 37
3.3 反應室之共振模態分析 40
3.3.1 聲場模組-聲壓時間調合分析 40
3.3.2 聲場模組-聲壓特徵頻率分析 43
3.3.3 聲壓模組與結構力學模組之耦合分析 45
第四章 聲化學反應器特性量測實驗 70
4.1 實驗設備 70
4.1.1 雷射干涉儀之基本原理 70
4.1.2 針狀水聽器之理論與製作 71
4.2 變幅杆位移及超音波強度 75
4.3 反應室聲場量測 77
4.4 共振式反應器之聲場特性 79
第五章 結論與未來展望 99
5-1 結論 99
5-2 未來展望 101
參考文獻 102
[1]倪星元, 沈军, 张志华, “奈米材料的理化特性与应用.” 化学工业出版社. 2006.
[2]王世敏, 许祖勋, 傅晶, “奈米材料原理与制备”, 五南图书出版公司.2004.
[3]陳郁文, “利用壓電薄膜量測空蝕氣泡對鄰近物體表面所造成的衝擊力”, 國立成功大學機械工程研究所碩士論文,2000.
[4]李春喜, 王子镐, “超声技术在奈米材料制备中的应用”,化学通报, 第五期, 2001.
[5]William T. Richards and Alfred L. Loomis, “The chemical effects of high frequency sound waves l.A Preliminary survey.” J. Am. Chem. Soc., Vol. 49, No. 12, pp. 3068-3100, 1927.
[6]T.G. Leighton, “Bubble population phenomena in acoustic cavitation.” Ultrasonics Sonochemistry, Vol 2, Oct. 1994.
[7]James D. Seymour, Henry C. Wallace, Ram B. Gupta “Sonochemical reactions at 640 kHz using an efficient reactor. Oxidation of potassium iodide .” Ulrasonics Sonochemistry, Vol. 4, pp. 289-293 ,1997.
[8]Sascha W. Dähnke and Frerich J. Keil, “Modeling of linear pressure fields in sonochemical reactors considering an inhomogeneous density distribution of cavitation bubbles.” Chemical Engineering Science, Vol. 54, pp. 2865-2872, 1999.
[9]Kenneth S. Suslick and Gareth J. Price, “Applications of ultrasound to materials chemistry.” Annu. Rev. Mater. Sci, Vol. 29, pp. 295-326, 1999.
[10]F. Burdin, et al, “Characterisation of the acoustic cavitation cloud by two laser techniques.” Ultrasonics Sonochemistry, Vol. 6, pp. 43-51, 1999.
[11]E. Maisonhaute, P. C. White and R. G. Compton, “Surface acoustic cavitation via nanosecond electrochemistry. ”, J. Phys. Chem. B, pp. 12087-12091, 2001.
[12]Peter R. Birkin, et al. “Experimental and theoretical charecterixation of sonochemical cells. Part 1. Cylindrical Reactors and their use to calculate the speed of sound in aqueous solutions.” J. Phys. Chem. A, pp. 306-320, 2002.
[13]Yiyun Zhao, et al. “Fluorescence enhancement of the aqueous solution of terephthalate ion after bi-frequency sonication .” Ultrasonics Sonochemistry, Vol. 9, pp. 241-243, 2002.
[14]Parag R. Gogate, et al. “Mapping of sonochemical reactors: Review, Analysis, and Experimical Verification.” AIChE Journal, Vol. 48, No. 7, 2002.
[15]Peter R. Birkin, et al. “A 1kHz resolution frequency study of a variety of sonochemical process .” Phys. Chem. Chem. Phys, Vol. 5 pp. 4170-4174, 2003.
[16]E. A. Brujan, T. Ikeda, Y. Matsumoto ,“Dynamics of ultrasound-induced cavitation bubbles in non-Newtonian liquids and rigid boundary .” Physics of fluids, Vol. 16, No. 7, July. 2004.
[17]Arshack Khachatryan, et al.“Influence of ultrasound on nanostructural iron formed by electrochemical reduction.” Ultrasonic Sonochemistry, Vol. 11, pp. 405-408, 2004.
[18]Wen-Shiang Chen, et al. “A novel method for estimating the focal size of two confocal high-intensity focused ultrasound transducers.” J. Acoust. Soc. Am, Vol. 117, No. 6, pp. 3740-3749, June. 2005
[19]V. Sáez, et al. “Chacterization of a 20 kHz sonoreactor. Part 1: analysis of mechanical effects by classical and numerical methods.” Ultrasonics Sonochemistry, Vol. 12, pp. 59–65, 2005.
[20]Yoichiro Matsumoto, et al. “Medical ultrasound with microbubbles.” Experimental Thermal and Fluid Science, Vol. 29, pp. 255–263, 2005.
[21]Giancarlo Cravotto, Gabriele Omiccioli, Livio Stevanato, “An improved sonochemical reactor.” Ultrasonics Sonochemistry, Vol. 12, pp. 213-217,2005.
[22]賴建宇, “高強度超音波與氣泡空蝕場應用於耐米粉體制被與養份萃取”國立成功大學機械工程研究所碩士論文, 2005.
[23]Hong Chen, Xiaojing Li, Mingxi Wan, “Spatial-temporal dynamics of cavitation bubble clouds in 1.2MHz focused ultrasound field.” Ultrasonics Sonochemistry, Vol. 13, pp. 480–486, 2006.
[24]Robert Mettin, et al. “Modeling acoustic cavitation with bubble redistribution.” Sixth International Symposium on Cavitation, CAV2006, Wageningen, The Netherlands, Sep. 2006.
[25]V. N. SKOKOV, et al. “Power spectrum of fluctuation for ultrasonic cavation process in glycerin.” Thermophysics and Aeromechanics, Vol. 14, No. 1, 2007.
[26]J. Klíma, et al. “Optimisation of 20 kHz conoreactor geometry on the basis of numerical smulation of local ultrasonic intensity and qualitative comparison with experimental results.” Ultrasonics Sonochemistry , Vol. 14, pp. 19–28, 2007.
[27]Timothy G. Leighton. “What is ultrasound?” Progress in Biophysics and Molecular Biology, Vol. 93, pp. 3-83, 2007.
[28]Herzfeld Karl F. and Litovitz Theodore A. “Absorption and dispersion of ultrasonic waves.” Academic Press,1959.
[29]Jonathan Harman, Edward W. Lamm,“The Impact of Ultrasonic Frequency on Particle Removal ”, Branson Ultrasonic Corp.
[30]Apfel RE, Holland CK, “Gauging the likelihood of cavitation from short-pulse, low-duty cycle diagnostic ultrasound,” Ultrasound in Medicine and Biology 17(2), 179-185 ,1991.
[31]Timothy J. Mason “Practical Sonochemistry - user’s guide to applications in chemistry and chemical engineering.” ELLIS HORWOOD LIMITED,1991.
[32]Christopher E. Brennen. “Cavitation and bubble dynamics.” Oxford University Press, 1995.
[33]Timothy J. Mason and J. Phillip Lorimer. “Sonochemistry-theory, applications and uses of ultrasound in chemistry.” ELLIS HORWOOD LIMITED,1988.
[34]Barbara J. Maynard. “Sonochemistry” Chemistry Summer, pp. 17-22, 2000.
[35]Timothy J. Mason. “Sonochemistry” Oxford science, 1999.
[36]Oleg V. Abramov, “High-Intensity Ultrasonics-Theory and Industrial Applications.” Gordon and Breach Science Publishers, Netherlands,1998.
[37]Julian R. Frederick, “Ultrasonic Engineering. ”John Wiley & Sons, 1965
[38]賴耿陽, “超音波工學理論實務”, 復漢出版社, 民國90年3月.
[39]COMSOL AB. “Structural Mechanics Module User’s Guide.” COMSOL AB.Aug. 2006.
[40]COMSOL AB. “Acoustics Module User’s Guide. ” COMSOL AB.Aug. 2006.
[41]COMSOL AB. “Acoustics Module Model Library . ” COMSOL AB.Sep. 2006.
[42]吳錦源,“創新雷射都卜勒振動干涉儀之研製-高性能微光機電系統之量測”,國立台大應用力學研究所博士論文,民國87年。
[43]陳巧雯, “微擴流器非穩態性能之量測”, 國立成功大學機械工程研究所碩士論文, 民國94年。.
[44]邱巨霖, “壓電式PVDF水聽器與解析是超音波換能器之研究”, 國立成功大學機械工程研究所碩士論文, 民國95年。
[45]黃清弘, “PVDF壓電陣列感測器之製作”, 國立成功大學機械工程研究所碩士論文, 民國93年。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊