跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2024/12/06 05:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡婉楹
研究生(外文):Wan-ying Tsai
論文名稱:好氧及厭氧生物程序處理含油脂廢水與生質能之回收
論文名稱(外文):Aerobic and anaerobic bioprocess study for bioenergy recovery of oily food processing wastewater
指導教授:鄭幸雄鄭幸雄引用關係
指導教授(外文):Sheng-Shung Cheng
學位類別:碩士
校院名稱:國立成功大學
系所名稱:環境工程學系碩博士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
畢業學年度:96
語文別:中文
論文頁數:144
中文關鍵詞:基因選殖冰品廢液油脂好氧-厭氧產氫-厭氧甲烷三段式生物程序Jet噴射導流管
外文關鍵詞:anaerobic hydrogen fermentation and anaerobic meice cream refuseJet loopthree-stage processes of aerobic hydrolysisoil and greaseclone library
相關次數:
  • 被引用被引用:1
  • 點閱點閱:1037
  • 評分評分:
  • 下載下載:248
  • 收藏至我的研究室書目清單書目收藏:1
本研究採用好氧-厭氧產氫-厭氧甲烷之三段式模場形式流體化床反應槽,反應體積分別為1000 L、69 L與110 L,進行含油廢水的階段式處理程序。先使含油廢水進入好氧系統進行油脂部份氧化,避免高濃度油脂對厭氧微生物造成傷害,再依序進入厭氧產氫槽及厭氧甲烷槽,並添加冰品廢液提高厭氧槽負荷以增加生物氣體的產量,評估油脂轉化為生質能源的可行性。好氧及厭氧反應槽各連續操作600與270天後,好氧槽部分總油脂轉換率可達60~80%在約2 kgCOD/m3-day 有機負荷下(0.2~1.0 gO&G/L) ,但油脂所形成的浮渣與微生物的大量流失成為了操作中最大的問題,由好氧反應槽中微生物之DGGE圖譜可發現具有油脂分解能力的Staphylococcus pasteur可長時間存在於反應槽中。厭氧系統總基質去除率約有87 %,且在20 kgCOD/m3-day(2 gO&G/L)的高負荷條件下,獲得0.12 L-H2/L-day(0.24 mm-H2/g-COD)及1 L-CH4/L-day(4.07 mm-CH4/g-COD)的生質能源,而槽內pH控制情況嚴重影響著厭氧產氣率大的好壞,並在操作過程中發現,冰品廢液中的高濃度油脂(2 gO&G/L)在厭氧槽體大量累積,而無法被生物順利分解。以T-RFLP結果顯示厭氧產氫槽中具產氫能力之Clostridium存在,甲烷槽中則以 Methanosaetaceae為主要菌群。
有鑑於模場操作經驗,為實際有效提升油脂好氧部分氧化效能,且提供微生物與基質有效接觸,避免好氧微生物的大量流失,故於實驗室設置一改良式的內部循環流式固定接觸曝氣槽,以Jet噴射導流管形式達到內部循環效果與氣體的供應,實驗結果發現,改良式反應槽在低氣體供應條件下(QG=3.6*10-3 m3/h),可獲得KLa為205 hr-1的高氧傳表現,且在反應槽的流力帶動下,創新式Bioweb生物載體可具有0.44 gVSS/gBioweb與175 mgO&G/gBioweb的吸附截留能力。
以高油脂含量冰品廢液為反應基質,將植種菌源固定於Bioweb載體進行好氧生物活性的測試,可得到6.3 mgO2/gVSS-hr 的S.OUR活性表現。內部循環流式固定接觸曝氣槽在1.6 kgCOD/m3-day (2 gO&G/L)的有機負荷下,經120天的長期操作,可達到96%的總COD降解效果及99%的油脂去除率,相較於傳統活性污泥有極高的油脂降解性。以內部循環流式固定接觸曝氣槽中載體的微生物進行 16S rDNA 基因選殖(clone library)及 DNA 定序(sequencing)實驗,在挑選的 161 個 clones 中發現 42 個 OTUs(operational taxonomic units)。可發現反應槽中同時存在好氧、厭氧與兼性菌,以Caldilinea aerophila (12.4%)為最主要的微生物菌群,另外還具有產生amylase 能力之Caldimonas taiwanensis strain On1與具有產生lipase基因序列的Schlegelella thermodepolymerans strain SA1,並發現其中有7個OTUs (19.9%)比對結果都具有分解碳氫化合物之能力
在厭氧產氫菌與甲烷菌的生物活性測試中,35℃中溫產氫菌在So/Xo =10.8的條件下,可獲得最佳yield約1.8 mmol-H2/g-COD。而55℃高溫產氫菌在So/Xo =12的條件下,可獲得最大產氫產率約2.0 mmol-H2/g-COD,而過程中高溫甲烷菌的添加則能有效提高油脂降解率至28%。
Three-stage processes of aerobic hydrolysis, anaerobic hydrogen fermentation and anaerobic methane fermentation were conducted to enhance the biodegradation and bioenergy recovery with pilot plant study. Adding granular activated carbon and diatomaceous earth as bacterial carrier in the aerobic fluidized bed was performed to increased mass transfer efficiency. Within 600 days of continuously operation, 60~80% of oil-and-grease were degraded in aerobic reactor at 2 kgCOD/m3-day of the volumetric loading rate (0.2~1.0 gO&G/L). With denaturing gradient gel electrophoresis (DGGE) analysis, Staphylococcus pasteur was found to be capable for oily compound degradation and always appeared in all the operation periods. At the second stage, the ice cream refuse was applied as the auxiliary substrate and co-fermented with aerobic tank effluent. With 270 days of operation and 20 kg-COD/m3/day (2 gO&G/L) of loading rate, 87% of substrate removal and 0.12 L /L-day of hydrogen producing rate were occurred (0.24 mm-H2/g-COD). At the third stage, the methane producing rate was 1 L/L-day (4.07 mm-CH4/g-COD). Clostridium cluster and Methanosaetaceae were the major microorganisms in the anaerobic hydrogen fermentation reactor and the anaerobic methane fermentation reactor via Terminal Restriction Fragment Length Polymorphism (T-RFLP) analyses.
Lab-scale fixed contact aerobic reactor with internal recycle was set up for oil-and-grease contained wastewater degradation. Jet loop design could get high oxygen transfer coefficient (KLa) as 205 hr-1 even with low air supply (QG=3.6*10-3 m3/h). The biomass growth on unit carrier was about 0.44 g/g-Bioweb and the oily compound absorption were amounted to 175 mg/g-Bioweb. The batch test for bacterial activity measurement was also studied, and the best specific oxygen uptake rate of 6.3 mg-O2/g-VSS/hr were achieved. With 120 days of operation, 96% of total chemical oxygen demand and 99% of oil and grease were removed with the volumetric loading rate of 1.6 kgCOD/m3-day (2 gO&G/L). According to the results of 16S rDNA based clone library, there were 42 operational taxonomic units (OTUs) in 161 clones. 12.4% of clones could be identified as Caldilinea aerophila (93% of similarity). Caldimonas taiwanensis strain On1 (99% of similarity, 3.1% of abondence) was capable for amylase excretion, and Schlegelella thermodepolymerans strain SA1 (96% of similarity, 1.9% of abondence) was capable for lipase excretion. There were 7 OTUs found to be hydrocarbon compound degrading bacteria. The 35℃ of anaerobic biochemical hydrogen potential test was studied. The best yield of 1.8 mmol-H2/g-COD was observed when the mixture of ice cream refuse was applied for substrate and the food-microbial ratio (So/Xo) equals to 10.8. The 55℃ of anaerobic biochemical hydrogen potential test was also studied. The best yield with the mixture of ice cream refuse as substrate was 2.0 mmol-H2/g-COD when the testing condition was set at So/Xo = 12. 28% of oily compound degradation was achieved when methanogens was added in this system.
中文摘要..........................................................................................................V
Abstract ........................................................................................................VII
致謝................................................................................................................ IX
目錄..................................................................................................................X
表目錄.........................................................................................................XIII
圖目錄...........................................................................................................XV
第一章 前言 1
第二章 文獻回顧 3
2-1. 油脂(Oil and Grease, O&G)之結構特性與生物分解機制 3
2-1-1. 油脂(Oil and Grease, O&G)與脂肪酸之組成結構與特性 3
2-1-2. 現今含油廢水處理現況 7
2-1-3. 油脂之生物分解機制與代謝途徑 9
2-1-4. Lipase水解酵素於含油廢水之應用 13
2-2. 噴射流導管流體系統之應用與設計因子 17
2-2-1. 噴射流導管流體系統 17
2-2-2. 噴射流導管流體系統設計與氧傳係數影響關係 18
2-2-3. 下流式噴射流導流管流體化床於廢水處理程序之應用 26
2-3. 吸附擔體於流體化床廢水處理程序之應用 28
2-3-1. 吸附理論 28
2-3-2. 影響吸附作用之因子 28
2-3-3. 等溫吸附模式 30
2-3-4. 活性碳之吸附 33
2-3-5. 矽藻土之吸附 35
2-3-6. 吸附劑之生物附著性 37
第三章 研究材料與方法 39
3-1. 反應槽設置 39
3-1-1. 內部循環流之接觸曝氣反應槽 39
3-1-2. 三段式好氧厭氧生物反應槽 41
3-2. 水質分析項目與使用儀器 47
3-2-1. ㄧ般水質分析項目 47
3-2-2. 儀器分析 48
3-3. 生物反應器流力實驗設備 50
3-3-1. 槽體總氧傳係數(Overall oxygen transfer coefficient , KLa)之測定 50
3-3-2. 槽體循流流況之測定 50
3-4. 生物活性檢測法 51
3-4-1. 氣泡呼吸儀好氧生物比攝氧速率試驗(Specific Oxygen Uptake Rate ,S.OUR) 51
3-4-2. 批分次生化產氫潛能試驗( Biochemical Hydrogen Potential test , BHP test) 53
3-5. 掃描式電子顯微鏡 Scanning Electron Microscope (SEM) 55
3-6. 分子生物技術 56
3-6-1. 總DNA萃取 56
3-6-2. 聚合酵素連鎖反應(Polymerase Chain Reaction, PCR) 57
3-6-3. 變性梯度明膠電泳 (Denaturing Gradient Gel Electrophoresis , DGGE) 59
3-6-4. 尾端修飾限制片段長度多形性(T-RFLP) 61
3-6-5. 16S rDNA基因選殖實驗(clone library) 63
第四章 結果與討論 65
4-1. 油脂類廢水與廢棄物特性分析 65
4-2. 模場規模好氧向下噴射流流體化床之流力特性研究 68
4-2-1. 模場規模好氧向下噴射流流體化床之流況特性探討 68
4-2-2. 模場規模好氧向下噴射流流體化床總氧傳特性探討 72
4-3. 三段式模場規模反應槽試程功能之探討 73
4-3-1. 好氧流體化床油脂處理反應槽之操作程序與水質分析 73
4-3-2. 厭氧產氫槽之操作程序與水質分析 75
4-3-3. 厭氧甲烷槽之操作程序與水質分析 79
4-3-4. 好氧流體化床微生物菌相與菌群結構探討 82
4-3-5. 厭氧產氫槽微生物菌相與菌群結構探討 85
4-3-6. 厭氧甲烷槽微生物菌相與菌群結構探討 88
4-4. 實驗室規模內部循環流式接觸曝氣反應槽之流力特性探討 92
4-4-1. 實驗室規模內部循環流式接觸曝氣反應槽之氧傳效能(K La) 探討 92
4-4-2. 實驗室規模內部循環流式接觸曝氣反應槽流力型式探討 96
4-5. Bioweb載體之基質與生物吸附性研究 97
4-5-1. Bioweb吸附載體表面特性探討 97
4-5-2. Bioweb載體於反應槽內之微生物附著特性 98
4-5-3. Bioweb載體於反應槽內之油脂附著特性 99
4-6. 油脂好氧分解活性測試 101
4-7. 實驗室規模內部循環流式接觸曝氣反應槽操作 106
4-7-1. 內部循環流式接觸曝氣反應槽之功能表現與微生物生態 106
4-7-2. 內部循環流式接觸曝氣反應槽之微生物菌相與菌群結構探討 110
4-7-3. 含油脂廢品生物處理與文獻之比較 120
4-8. 厭氧油脂分解菌之生化產氫與產甲烷潛能探討 124
4-8-1. 中溫厭氧產氫菌分解油脂之生化產氫潛能測試 124
4-8-2. 高溫厭氧微生物分解油脂之生化產氫與產甲烷潛能測試 126
第五章 結論與建議 131
5-1. 結論 131
5-2. 建議 133
第六章 參考文獻 135
自述 144
Abou-Zeid DM, Biebl H, Sproer C and Muller R-J, Propionispora hippei sp. nov., a novel Gram-negative, spore-forming anaerobe that produces propionic acid. Int J Syst Evol Microbiol 54:951-954 (2004).
Al-Ghouti MA, Khraisheh MAM, Allen SJ and Ahmad MN, The removal of dyes from textile wastewater:a study of the physical characteristics and adsorption mechanisms of diatomaceous earth. J Environ Manage 69:229-238 (2003).
Angelidaki I, Petersen SP and Ahring BK, Effects of lipids on thermophilic anaerobic digestion and reduction of lipid inhibition upon addition of bentonite. Appl Microbiol Biotechnol 33:469-472 (1990).
Angelidaki I and Ahring BK, Effects of free long chain fatty acids on thermophilic anaerobic digestion. Appl Microbiol Biotechnol 37:808-812 (1992).
Angelidaki I and Ahring BK, Establishment and characterization of an anaerobic thermophilic (55℃) enrichment culture degrading long-chain fatty acids. Appl Environ Microbiol 61:2442-2445 (1995).
Apilanez I, Gutierrez A and Diaz M, Effect of surface materials on initial biofilm development. Bioscience Technol 66:225-230 (1998).
Aytas S, Akyil S and Aslani MMA, Removal of uranium from aqueous solutions by diatomite. Journal of Radioanalytical and Nuclear Chemistry 240:973-976 (1998).
Azbar N and Yonar T, Comparative Evaluation of alaboratatory and full-scale treatment alternatives for the vegetable oil refining industry wastewater. Process Biochem 39:869-875 (2004).
Bansal RC, Donnet JB and Stoeckli HF, Active Carbon. Marcel Dekker, New York (1988).
Becker P, Koster D, Popov MN, Markossian S, Antranikian G and Maerkl H, The biodegradation of olive oil and the treatment of lipid-rich wool scouring wastewater under aerobic thermophilic conditions. Wat Res 33:653-660 (1999).
Blenke H, Loop reactors. In: T.K. Ghose, A. Fiechter and N. Blakebrugh (Eds): Advances in Biochemical Engineering. 13, Berlin: Spinger, pp121-214 (1979)
Brooksbank AM, Latchford JW and Mudge SM, Degradation and modification of fats, oils and grease by commercial microbial supplements. World J Microbiol Biotechnol 23:977-985 (2007).
Bryanrt MP, Microbial methane production. Theoretical aspects. J Anim Sci 48:193-201 (1979).
Cammarota MC, Teixeira GA and Freire DMG, Enzymatic prehydrolysis and anaerobic degradation of wastewaters with high oil contents. Biotechnol Lett 23: 1591-1595 (2001).
Campbell MK and Farrell SO, Biochemistry, 4rd ed., ISBN:981-243-980-3(2003).
Capdeville B and Nguyen KM, Kinetics and modelling of aerobic film growth. Water Sci Technol 22:149-170 (1990).
Charles GH, An Introduction to Chemical Engineering Kinetics and Reactor Design, Wiley, New York, pp 389-417 (1979).
Charinpanitkul T, Tsutsmumi A and Yoshida K, Gas-liquid mass transfer in a three-phase reactor. J Chem Eng Japan 26:440-442 (1993).
Chen WM, Changb JS, Chiu CH, Changc SC, Chen WC and Jiang CM, Caldimonas taiwanensis sp. nov., a amylase producing bacterium isolated from a hot spring. Syst Appl Microbiol 28:415-420 (2005).
Chen SD, Lee KS, Lo YC, Chen WM, Wu JF, Lin CY and Chang JS, Batch and continuous biohydrogen production from starch hydrolysate by Clostridium species. Int J Hydrogen Energy 33:1803-1812 ( 2008 ).
Chiang CF, Lu CJ, Sung LK and Wu YS, Full-scale evaluation of heat balance for autothermal thermophilic aerobic treatment of food processing wastewater. Water Sci Technol 43:251-258 (2001).
Chung AP, Rainey F, Nobre MF, Burghar dt J and Costa MS da , Meiothermus cerbereus sp. nov., a new slightly thermophilic species with high levels of 3-hydroxy fatty acids. Int J Syst Evol Microbiol 47:1225-1230 (1997).
Coates JD, Chakraborty R, Lack JG, O’Connor SM,Cole KA, Bender KS, and Achenbach LA, Anaerobic benzene oxidation coupled to nitrate reductionin pure culture by two strains of Dechloromonas. Nature 411:1039-1043 (2001).
Crocetti GR, Banfield JF, Keller J, Bond PL and Blackall LL, Glycogen- accumulating organisms in laboratory-scale and full-scale wastewater treatment processes. Microbiology 148: 3353-3364 (2002).
Dilek FB, AndersonGK and Bloor J, Investigation into the microbiology of a high rate jet-loop activated sludge reactor treating brewery wastewater. Water Sci Tech 34:107-112 (1996).
Duangmanee T, Padmasiri S, Simmons JJ, Raskin L and Sung S, Hydrogen production by anaerobic microbial communities exposed to repeated heat treatment, WEFTEC 75th Annual Conference (2002).
Ekman J, Kosonen M, Jokela S, Kolari M, Korhonen P and Salkinoja-Salonen M, Detection and quantitation of colored deposit-forming Meiothermus spp. in paper industry processes and end products. J Ind Microbiol Biotechnol 34:203-211 (2007).
Fabian R, Simone R and Dieter J, Thermotolerant poly (3-hydroxybutyrate)- degrading bacteria from hot compost and characterization of the PHB depolymerase of Schlegelella sp. KB1a. Archives of Microbiology 182: 157-164 (2004).
Fadavi A and Chisti Y, Gas–liquid mass transfer in a novel forced circulation loop reactor. Chem Eng J 112:73–80 (2005).
Fakeeha AH, Jibril BY, Ibrahim G and Abasaeed AE, Medium effects on oxygen mass transfer in a plunging jet loop reactor with a downcomer. Chem Engineering and Processing 38:259-265 (1999).
Fan LS, Distribution of bubble properties in a gas-liquid-solid fluidized bed. AICHE J 30: 894-903 (1984).
Farizoglu B, Keskinler B, Yildiz E and Nuhoglu A, Cheese whey treatment performance of an aerobic jet loop membrane bioreactor. Process Biochem 39:2283-2291 (2004).
Figueiredo JL, Pereira MRF, Freitas MMA and Orfao JJM, Modification of the Surface Chemistry of Activated Carbon. Carbon 37:1379-1389 (1999).
Frederick MA, Short protocols in molecular biology: a compendium of methods from current protocols in molecular biology, 4th ed., Wiley, New York (1999).
Galbraith H, Miller TB, Paton AM and Thompson JK, Antibacterial activity of long chain fatty acids and reversal with calcium magnesium, ergocalciferol and cholesterol. J Appl Bacterol 34:803-813 (1971).
Gombert AK, Pinto AL, Castilho R and Freire DMG, Lipase production by Penicillium restrictum in solid-state fermentation using babassu oil cake as substrate. Process Biochem 35:85-90 (1999).
Gottschalk G and Peinenmann S, The anaerobic way of life. In:Prokaryote. Balows A, Truper HG, Dworkin M, Harder W and Schleifer KH, Vol. 1. Spring-Verlag New York . pp 300-311 (1992)
Hanaki K, Herbert D, Philipps PJ and Strange RE, Carbohydrate analysis. Methods in Enzymology 5:265-277 (1971).
Hanaki K, Matsuo T and Nagase M, Mechanism of inhibition caused by long chain fatty acids in anaerobicdigestion process. Biotechnol Bioeng 23:1591-1610 (1981).
Haridas A, Suresh S, Chitra KR and Manilal VB, The Buoyant Filter Bioreactor: a high-rate anaerobic reactor for complex wastewater—process dynamics with dairy effluent. Water Res 39:993-1004 (2005).
Herbert D, Philipps PJ and Strange RE, Carbohydrate analysis, Methods in Enzymology 5:265-277 (1971).
Hwu CS, Enhancing anaerobic treatment of wastewater containing oleic acid. Ph.D. thesis Wageningen, The Netherlands: Wageningen Agricultural University. (1997).
James CB, Anderson GK and Willey AR, High rate aerobic treatment of brewery wastewater using the jet loop reactor. Water Res 29:1217-1223 (1995).
James M, Montgomery Consulting Engineers, Inc., Water Treatment Principles and Design, Wiley-Interscience (1985).
Jeganathan J, Nakhla G and Bassi A, Long-term performance of high-rate anaerobic reactors for the treatment of oily wastewater. Environ Sci Technol 40:6466-6472 (2006a).
Jeganathan J, Bassi A and Nakhla G, Per-treatment of high oil and grease pet food industrial wastewater using immobilized lipase hydrolyzation. J Hazard Mater B137:121-128 (2006b).
Jeganathan J, Nakhla G and Bassi A, Oily wastewater treatment using a novel hybrid PBR–UASB system. Chemosphere 67:1492-1501 (2007a)
Jeganathan J, Nakhla G and Bassi A, Hydrolytic performant of oily wastewater by immobilized lipase. J Hazard Mater 145:127-135 (2007b)
Juretschko S, Loy A, Lehner A and Wagner M, The microbial community composition of a nitrifying-denitrifying activated sludge from an industrial sewage treatment plant analyzed by the full-cycle rRNA approach. Syst Appl Microbiol 25:84-99 (2002).
Kim SH, San SK and Shin HS, Two-phase anaerobic treatment system for fat-containing wastewater. J chem Technol biotechnol 79:63-71 (2004).
Khraisheh MAM, Al-Ghouti MA, Allen SJ and Ahmad MN, Effect of OH and Silanpl groups in the removal of dyes from aqueous solution using diatomite. Water Res 39:922-932 (2005).
Koster IW and Cramer A, Inhibition of methanogenesis from acetate in granular sludge by long chain fatty acids. Appl Environ Microbiol 53:403-409 (1987).
Krause A, Manufacturing plants for the production of edible fats and oils. Textbook and Manual of Wastewater Technology V: Organically contaminated wastewaters from the food processing industry (1985).
Kulkarni K, Shah YT and Schumpe A, Hydrodynamics and mass transfer in downflow bubble column. Chem Eng Commun 24:307-311 (1983).
Kurian R, Acharya C, Nakhla G and Bassi A, Conventional and thermophilic aerobic treatability of high strength oily pet food wastewater using membrane-coupled bioreactors. Water Res 39:4299-4308 (2005).
Lalman JA and Bagley DM, Anaerobic degradation and methanogenic inhibitory effects of oleic and stearic acids. Water Res 35:2975-2983 (2001).
Lalman J and Bagley DM, Effects of C18 Long Chain Fatty Acids on Glucose, Butyrate and Hydrogen Degradation. Water Res 36:3707-3313 (2002).
Leal MCMR, Freire DMG, Cammarota MC, Sant’Anna Jr GL, Effect of enzymatic hydrolysis on anaerobic treatment of dairy wastewater. Process Biochem 41: 1173-1178 (2006).
Lee SY and Rhee JS, Production and partial purification of a lipase from Pseudomonas putida 3 SK. Enzyme Microb Technol 15:617–623 (1993).
Lesuisse E, Schanck K and Colson C, Purification and preliminary characterization of extracellular lipase of Bacillus subtilis 168, an extremely basic pH-tolerant enzyme. Eur J Biochem 216:155–160 (1993).
Li CY, Chenb SJ, Chenga CY and Chena TL, Production of Acinetobacter radioresistens lipase with repeated fed-batch culture. Biochem Eng J 25:195-199 (2005).
Liu WT, Marsh TL, Cheng H and Forney LJ, Characteristion of microbial diversity by determining terminal restriction fragement length polymorphisms of genes encoding 16S rRNA. Appl Environ Microbiol 63:4516-4522 (1997).
Liu X, Wen J, Oing Y and Xueming Z, The pilot study for oil refinery wastewater treatment using a gas-liquid-solid three- phase flow airlift loop bioreactor. Biochem Eng J 27:40-44 (2005).
Masse L, Masse DI and Kennedy KJ, Effect of hydrolysis pretreatment on fat degradation during anaerobic digestion of slaughterhouse wastewater. Process Biochem 38:1365-1372 (2003).
Medic L, Cehovin A, Coloini T and Pavko A, Volumetric gas-liquid mass transfer coefficients in a rectangular bubble column with a rubber aeration pad. Chem Engng J 41:51-54 (1989).
Meyers SA, Cuppett SL and Hutkins RL, Lipase production by lactic acid bacteria and activity on butter oil. Food Microb 13:383-389 (1996).
Miller DN, Bryant JE, Madsen EL and Ghiorse WC, Evaluation and optimatization of DNA extraction and purification procedures for soil and sediment samples, Appl Environ Microbiol 65:4715-5724 (1999).
Nagase M, Mechanism of inhibition caused by long chain fatty acids in anaerobicdigestion process. Biotechnol Bioeng 23:1591-1610 (1981).
Nakano K and Matsumura M, Improvement of treatment efficiency of thermophilic oxic process for highly concentrated lipid wastes by nutrient supplementation. J Biosci Bioeng 92:532-538 (2001).
Owen WF, Stuckey DC, Herly JRJB, Young LY and McCarty PL, Bioassay for monitoring biochemical methane potential and anaerobic toxicity, Water Research 13:485-492 (1979).
Padmavathi G. and Remananda Rao K, Hydrodynamics of reversed flow jet loop reactor as a gas-liquid-solid contacter. Chem Eng Sci 46:3293-3296 (1991).
Pereira MA, Pires OC, Mota M and Alves MM, Anaerobic degradation of oleic acid by suspended and granular sludge:identification of palmitic acid as a key intermediate. Water Sci Technol 45:139-144 (2002).
Pereira MA, Pires OC, Mota M and Alves MM, Anaerobic biodegradation of oleic and palmitic acids:evidence of mass transfer limitations caused by long chain fatty acid accumulation onto the anaerobic sludge. Biotechnol Bioeng 92:15-23 (2005)
Pereira MA, Sousa DZ, Mota M and Alves MM, Mineralization of LCFA associated with anaerobic sludge:kinetics, enhancement of methanogenic activity, and effect of VFA. Biotechnol Bioeng 88:502-511 (2004).
Radovic LR, Silva IF, Ume JI, Menendez JA, Leony CA and Scaroni AW, An experimental and theoretical study of the adsorption of aromatics possessing electron-withdrawing and electron-donating functional groups by chemically modified activated carbons. Carbon 35:1339-1348 (1997).
Riesmer D, Zimmat SR, Owens RA, Wagenhofer M, Hillen W, Vollbach S and Henco K, Temperature-gradient gel electrophoresis of nucleic acids:analysis of conformational transitations, sequence variations, and protein-nucleic acid interactions. Electrophoresis 10:377-389 (1989).
Rinzema A, Anaerobic treatment of wastewater with high concentration of lipids or sulfate. Ph.D. thesis Wageningen, The Netherlands: Wageningen Agricultural University (1988).
Rinzema A, Alphenaar A and Lettinga G, The effect of lauric acid shock loads on the biological and physical performance of granular sludge in UASB reactors digesting acetate. J Chem Technol Biotechnol 46:257-266 (1989)
Rooney D and Weatherley LR, The effect of conditions upon lipase catalysed hydrolysis of high oleate sunflower oil in a liquid-liquid reactor. Process Biochem 36:947-953 (2001)
Scientific psycsic, Fats, Oils, Fatty Acids, Triglycerides, http://www.scientificpsychic.com/fitness/fattyacids1.html [accessed 26 May, 2008].
Sekiguchi Y, Yamada T, Hanada S, Ohashi Akiyoshi, Harada H and Kamagata Y, Anaerolinea thermophila gen. nov., sp. nov. and Caldilinea aerophila gen. nov., sp. nov., novel filamentous thermophiles that represent a previously uncultured lineage of the domain Bacteria at the subphylum level. Int J Syst Evol Microbiol 53:1843-1851 (2003).
Shin HS, Kim SH, Lee CY and Nam SY, Inhibitory effects of long-chain fatty acids on VFA degradation and β- oxidation. Water Sci Technol 47:139-146 (2003).
Shinohara M, Uehara Y and Nakano A, Production of beta-hydroxypalmitate methyl esterase from Ideonella sp.0-0013. US Patent 7341857 (2008).
Singh M, Singh S, Singh RS, Chisti Y and Banerjee UC, Transesterification of primary and secondary alcohols using Pseudomonas aeruginosa lipase. Bioresour Technol 99:2116-2120 (2008).
Sirianuntapiboon S, Jeeyachok N and Larplai R, Sequencing batch reactor biofilm system for treatment of milk industry wastewater. J Environ Manage 76: 177-183 (2005).
Sproer C, Reichenbach H and Stackebrandt E, The correlation between morphological and phylogenetic classification of myxobacteria. Int J Syst Bacteriol 49:1255-126 (1999).
Stoeckli HF, Microporous Carbons and Their Charactrrization-The Present State-of-The-Art. Carbon 28:1-6 (1990).
Tabel KH and Zehner P, Fluid dynamic description of jet loop reactors in multi-phase operations. Chem Eng Technol 12:274-280 (1989).
Tanaka K, Nakamura K and Mikami E, Fermentation of maleate by a gram-negative strictly anaerobic non-spore-former, Propionivibrio dicavboxylicus gen. nov., sp. nov. Arch Microbioal 154:323-328(1990)
Tano-Debrah K, Seijiro F, Naoki O, Futoru T and Michihito O, An inoculum for the aerobic treatment of wastewaters with high concentrations of fats and oils. Bioresour Technol 69:133-139 (1999)
Tung HL, Tu CC, Chang YY and Wu WT, Bubble characteristics and mass transfer in an airlift reactor with multiple net draft tubes. Bioprocess Eng 18:323 - 328 (2005).
Valladảo ABG, Prẻ-hidrỏlise enzimảtica aplicada ao tratamento anaerỏbio de efluente de abatedouro de aves. Dissertacảo de Mestrado, Universidade federal do Rio de Janeiro, Rio de Janeiro, Brasil. (2005).
Valladảo ABG, Freire DMG and Cammarota MC, Enzymatic pre-hydrolysis applied to the anaerobic treatment of effluents from poultry slaughterhouses. Int Biodeterior Biodegradation 60:219-225 (2007).
Victor LL, Nakhla G, Bassi A, Treatability and kinetics studies of mesophilic aerobic biodegradation of oil and grease pet food wastewater. J. Hazard. Mater B112:87-94 (2004)
Vogelpohl A, Biological treatment of wastewater in the compact reactor. Chem and Ind 37:43-46 (1985).
Vorholt JA, Kalyuzhnaya MG, Hagemeier CH, Lidstrom ME and Chistoserdova L, MtdC a Novel Class of Methylene Tetrahydromethanopterin Dehydrogenases. J Bacteriol 187: 6069-6074 (2005).
Wachsmann U, Rabiger N and Vogelpohl A, Effect of geometry on hydrodynamics and mass transfer in the compact reactor. Ger Chem Eng 8:411-418 (1985).
Wade LG, Organic Chemistry, Prentice-Hall, New Jersey, 1164-1168 (1999).
Wakelin NG and Forster CF, An investigation into microbial removal of fats oils and greases. Bioresour Technol 59:37–43 (1997).
Warnecke HJ, Geisendorfer M and Hempel DC, Mass transfer behaviour of gas-liquid jet loop reactors. Chem Eng Technol 11:306-301 (1988).
Weddle CL and Jenkins D, The viability and activity of activated sludge. Water Res 5:621-640 (1971).
Wen J, Na P, Lin H and Chen Y, Local overall volumetric gas–liquid mass transfer coefficients in gas–liquid–solid reversed flow jet loop bioreactor with a non-Newtonian fluid. Biochem Eng Journal 5:225-229 (2000).
Wen J, Na P, Lin H and Chen Y, Local overall gas–liquid mass transfer coefficient in a gas–liquid–solid reversed flow jet loop reactor. Chem Eng Journal 88:209-213 (2002).
Yagna PK and Ramanujam TK, Liquid circulation velocity and overall gas holdup in a modified reverse flow jet loop bioreactor with low density particles. Bioprocess Eng 10:131-137 (1995).
Yildiza E, Keskinler B, Pekdemir T, Akay G and Nuhoˇglu A, High and strength wastewater treatment in a jet loop membrane bioreactor: kinetics performance evaluation. Chem Eng Science 60:1103 -1116 (2005).
Yuan P, Wu DQ, He HP and Lin ZY, The hydroxyl species and acid site on diatomite surface:a combined IR and Raman study. Appl Surf Sci 227:30-39 (2003).
Zielke U, Huttinger KJ and Hoffman WP, Surface-oxidized carbon fibers:Ⅳ. Interaction with high-temperature thermoplastics 34:1015-1026 (1996).
林建勝,以生質能源程序探討廚餘厭氧產氫醱酵之研究,國立成功大學環境工程所碩士論文 (2007).
許以樺,盧至人,以高溫好氧處理油脂廢水可行性研究,國立中興大學 環境工程所碩士論文 (2000).
陳秋楊,廢水處理曝氣系統,工業污染防制團手冊之十九,pp.18 (1988).
廖述風,向下噴射流導流管流體化床進行油脂廢水快速部分氧化以提升生質能源化效率,國立成功大學環境工程所碩士論文 (2006).
鄭幸雄、李東峰、梁德明,實廠厭氧生物反應槽產氫現象,第二十五屆廢水處理研討會論文集 (2000).
嚴國欽,食品油脂學,上冊,國立中興大學教務處出版組印 (1993).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top