跳到主要內容

臺灣博碩士論文加值系統

(3.236.124.56) 您好!臺灣時間:2021/07/31 07:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:賴怡潔
研究生(外文):Yi-Chieh Lai
論文名稱:廢棄物中貴重金屬回收過程空氣污染物之排放特徵與控制技術
論文名稱(外文):Control technology and characteristics of toxic air pollutants from valuable metals recovery in waste
指導教授:李文智李文智引用關係
指導教授(外文):Wen-Jhy Lee
學位類別:博士
校院名稱:國立成功大學
系所名稱:環境工程學系碩博士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
畢業學年度:96
語文別:英文
論文頁數:190
中文關鍵詞:脫硫觸媒金屬回收PAHsPBDD/FsPCDD/Fs電解裂解印刷電路板
外文關鍵詞:PyrolysisHydrodesulfurization catalystsPrinted circuit boardsPBDD/FsPCDD/FsElectrolysisPAHsMetal recovery
相關次數:
  • 被引用被引用:2
  • 點閱點閱:514
  • 評分評分:
  • 下載下載:152
  • 收藏至我的研究室書目清單書目收藏:0
廢印刷電路板及廢脫硫觸媒係兩類具有高金屬含量之廢棄物,從環境保護及資源再利用的觀點考量,此兩類具有高度回收潛力之廢棄物其最終處置實為高度重視的議題。近年來焚化係被認為是垃圾處理之主要技術,然而焚化過程卻可能導致有害空氣污染物包括揮發性金屬氣體、戴奧辛及多環芳香烴化合物的生成。本研究之目的係研發可行之廢棄物中貴重金屬回收技術,並探討貴重金屬回收過程中,有害空氣污染物之宿命。
在廢印刷電路板部分,本研究以高溫熱熔設備裂解含有鹵素難燃劑之廢印刷電路板,並探討裂解過程中氯化戴奧辛(PCDD/Fs)及溴化戴奧辛(PBDD/Fs)之生成。結果顯示,裂解過程中生成的PCDD/Fs及PBDD/Fs可藉由控制一次爐燃燒條件而受到破壞。裂解溫度與CaO的添加係抑制PCDD/Fs及PBDD/Fs生成之兩重要因子。首先,當一次爐裂解溫度由850˚C提升至1200 ˚C,底灰中PCDD/Fs及PBDD/Fs的生成量與煙道氣中PCDD/Fs及PBDD/Fs排放係數,皆隨著裂解溫度提升而降低約50%。再者,CaO的添加能收附酸性氣體HCl及HBr並進行中和反應,形成固相產物CaCl2及CaBr2,有效抑制80%以上的PCDD/Fs及PBDD/Fs合成,此外亦能防止酸性氣體腐蝕研究設備。
接著,本研究係以備有流體化床,氧化銥網狀陽極以及不�袗�平板陰極之電解設備回收廢印刷電路板酸洗液中銅金屬,並探討兩電解操作因子(初始電解液pH值與電解時間)對銅回收效率之影響。實驗於定電流2A與兩小時電解時間操作條件下,探討電解液初始pH值(2.5–4.5)對銅回收率之影響,結果顯示初始電解液pH值為4.5時,銅電解回收率為最大值(約為43%)。於定電流2A與初始電解液pH值4.5操作條件下,結果顯示銅回收率隨著電解時間增加而增加,於最大電解時間(6小時) ,銅電解回收率為最大值(約為77%)。另由XRD晶相分析結果顯示,陰極板上的電解沉積物中以銅金屬相的強度最高,證實此流體化床電解槽可有效回收廢酸洗液中銅金屬。然而,相關研究仍須進行以提高銅回收率。
在廢觸媒部份,本研究先以熱處理去除廢觸媒表面之殘餘油、碳及硫等汙染物。結果顯示,殘餘固體物中總PAH含量隨著一次爐裂解溫度之提升而降低,而後燃室亦有效抑制煙道氣中95%之總PAH排放量。此外,熱處理過程能將高分子量PAHs轉變成為低分子量PAHs,且後燃室之操作溫度(1200 ˚C)足以抑制其他高分子量PAH的生成,故煙道氣中以低分子量PAHs佔優勢,而殘餘固體物中則以高分子量PAH佔優勢。最後,研究所得之廢觸媒及熱裂解殘餘物中金屬濃度及毒性特性溶出程序(TCLP)濃度數據,可做為參考指標用以評估金屬回收之潛力。
經熱處理之廢觸媒殘餘物,則以濕式冶金結合電解技術回收殘餘物中貴重金屬。研究結果顯示,含有HNO3/H2SO4/HCl (體積比為2:1:1)之酸消化液,其金屬消化率明顯比只含有HNO3/H2SO4 (體積比為1:1)之酸消化液來的高,同時在固液比為40 g/L、消化時間一小時及消化溫度70 °C之操作條件下,金屬消化率為最佳。在此消化條件下,目標金屬鉬、鎳及釩於第一階段消化下所得之消化率分別為90% 、99%及99%,遠比第二/第三/第四階段之消化率高。當實驗於定電流2A (電流密度為35.7 mA/cm2) 、兩小時電解時間及恆電壓5V操作條件下,第一階段消化液中目標金屬鉬、鎳及釩之電解回收率分別為15%、61%及66%,而延長電解時間至四小時,對於目標金屬之電解回收率則無明顯之提升。若考慮酸消化率及電解回收率,則鉬、鎳及釩之總回收率(酸消化率×電解回收率)分別為14%、60%及65%。
The spent printed circuit boards (P-CB) and spent hydrodesulfurization (HDS) catalysts are two kinds of wastes with high metal contents. From the viewpoints of environmental protection and resource utilization, the disposal of wastes which contain valuable metals is of great concern. Incineration has been recently considered as a predominate technology of the waste treatment. However, some undesirable toxic air pollutants i.e. volatile metals, dioxins, and polycyclic aromatic hydrocarbons may be generated during the thermal treatment. The goal of this study is to develop feasible process for valuable metals recovery and to investigate control technologies for toxic air pollutants, generating during metal recovering from spent P-CBs and spent HDS catalysts.
For spent P-CB containing halogens flame retardants were pyrolyzed in a high-temperature melting system to observe the formation behaviours of chlorinated (PCDD/PCDF) and brominated (PBDD/PBDF) dibenzo-p-dioxins and dibenzofurans. Results showed that the formation of PCDD/Fs and PBDD/Fs during pyrolysis can be destroyed under controlled primary combustion conditions. There are two significant factors that influenced the extent of PCDD/Fs and PBDD/Fs formation. The first factor was temperature. The result showed that, both the total-PCDD/F and PBDD/F content in the bottom ash and the total-PCDD/F and PBDD/F emission factor from the flue gas decrease by approximately 50% with the increase of pyrolysis temperature from 850 to 1200 ˚C. The second factor was the addition of CaO. The possible mechanism involves the reaction between CaO and HCl/HBr to form the solid phase product (CaCl2/CaBr2). Thus, the addition of CaO is effective in absorbing HCl and HBr, resulting in the inhibition of PBDD/Fs synthesis by more than 80%, and further prevents the acid gases (HCl and HBr) that corrode the equipment.
Then, the acid-leachate of P-CBs was investigated to recover Cu using a fluidized-bed electrolysis process equipped with a glass bead medium, an iridium oxide mesh anode, and a stainless steel plate cathode. The effects of electrolysis parameters (initial electrolyte pH and electrolytic time) on the electrolytic recoveries of Cu were investigated. For 2hr electrolysis at initial electrolyte pH of 2.5–4.5 under constant current 2 A, the maximum electrolytic recovery of Cu (~43%) was obtained at the initial electrolyte pH of 4.5. Under this initial electrolyte pH, it was found that the recoveries of Cu dramatically increased with electrolytic time and the maximum recovery of Cu (77%) was obtained at 6 hr. Furthermore, XRD patterns of the electrodeposited compounds on cathode show that Cu is the predominant one on surface of cathode, mainly indicating a fluidized-bed electrolysis process is feasible for the Cu recovery. However, further study is necessary to improve the metal recovery.
For spent HDS catalysts, thermal treatment was performed to remove contaminants (residual oil, carbon and sulfur) present on the surface of HDS catalysts. Results show that total-PAH content in treated residues decreased with the pyrolysis temperature of the primary furnace, while those generated in flue gases were destroyed by the afterburner at an efficiency of approximately 95%. In addition, the thermal process converts high molecular weight PAHs to low molecular weight PAHs, and the afterburner temperature involved (1200 ˚C) was high enough to prohibit the generation of high molecular weight PAHs (HM-PAHs), leading to the domination of low molecular weight PAHs (LM-PAHs) in flue gases, while treated residues were dominated by HM-PAHs. Finally, information on metal contents and their concentrations in the Toxicity Characteristic Leaching Procedure in spent HDS catalyst and thermal treated residues are examined as an index of the potential for metal recovery.
An acid-leaching and fluidized-bed electrolysis combined process was then performed to recover valuable metals from spent HDS catalysts. It was found that an acid solution consisting of concentrated HNO3/H2SO4/HCl with a volume ratio of = 2:1:1 was found to be better than the other (HNO3/H2SO4 = 1:1) to leach the metals, the better solid/liuid ratio and leaching time were 40 g/L and 1 hr, respectively, at 70 °C. Under this condition, the leaching yields of target metals (Mo, Ni, and V) in the 1st-stage leaching reached 90, 99, and 99%, respectively, much higher than those in the 2nd/3rd-/4th-stage. When this acid leachate was electrolyzed for 2-hr at 2 A constant current (current density = ~35.7 mA/cm2), a stable cell voltage of 5 V was observed and the electrolytic recoveries of Mo, Ni, and V were ~15, 61, and 66%, respectively, but extending the electrolysis time from 2 to 4 hrs did not apparently increased the recoveries. For such an operation, the total recoveries (leaching yield × electrolytic recovery) of Mo, Ni, and V were ~14, 60, and 65%, respectively.
摘要 I
ABSTRACT III
致謝 VI
CONTENTS VII
LIST OF TABLES XI
LIST OF FIGURES XIV

CHAPTER 1 INTRODUCTION 1
1.1 Background 1
1.2 Goal and Objective 3

CHAPTER 2 LITERATURE SURVEY 5
2.1 Dioxins and furans 5
2.1.1 Chemical Structures and Properties 6
2.1.2 Toxicity Equivalency Factor 9
2.1.3 Health Effects 13
2.1.4 Formation mechanisms in thermal systems 15
2.1.5 Emission sources 25
2.2 Polycyclic Aromatic Hydrocarbons 28
2.2.1 Chemical Structures and Properties 28
2.2.2 Toxicity Equivalency Factor 31
2.2.3 Health Effects 34
2.2.4 Formation of PAHs 36
2.2.5 Emission sources 37
2.3 Metals and Heavy Metals 39
2.4 Metal Recovery 40
2.5 Electrolysis 41
CHAPTER 3 EXPERIMENTAL SECTION 43
3.1 The Procedure of Experiments 43
3.2 Sample Characterization 45
3.3 Thermal Treatment 47
3.3.1 Laboratory Melting System 47
3.3.2 Pyrolysis of Spent P-CBs 50
3.3.3 Thermal Pre-treatment of Spent HDS Catalysts 50
3.4 Analyses of Toxic Air Pollutants 51
3.4.1 PCDD/Fs and PBDD/Fs Analyses 51
3.4.2 PAHs Analyses 52
3.5 Extraction 56
3.6 Electrolysis 57
3.7 Quality Assurance (QA)/Quality Control (QC) 59
3.7.1 QA/QC of PCDD/Fs and PBDD/Fs analyses 59
3.7.2 QA/QC of PAHs analyses 60
3.7.3 QA/QC of Metal Extraction 61

CHAPTER 4 RESULTS AND DISCUSSION 63
4.1 Emissions of PCDD/Fs and PBDD/Fs from the pyrolysis of printed circuit boards 63
4.1.1 Composition of spent printed circuit boards 63
4.1.2 Effect of temperature on the PCDD/Fs and PBDD/Fs formation 66
4.1.2.1 Characteristics of PCDD/F and PBDD/F contents in spent P-CBs 66
4.1.2.2 PCDD/F and PBDD/F concentrations in bottom ashes 70
4.1.2.2.1 PCDD/F concentrations in bottom ashes 70
4.1.2.2.2 PBDD/Fs concentrations in bottom ashes 74
4.1.2.3 PCDD/F and PBDD/F concentrations in the flue gas 78
4.1.2.3.1 PCDD/F concentrations in the flue gas 78
4.1.2.3.2 PBDD/F concentrations in the flue gas 83
4.1.2.3.3 Mass ratio of the PBDD/F to the PCDD/F in the flue gas 88
4.1.2.4 Mass distributions of PCDD/Fs and PBDD/Fs 90
4.1.2.4.1 Mass distributions of PCDD/Fs in bottom ashes, cooling unit, filter and glass PUF cartridge 90
4.1.2.4.2 Mass distributions of PBDD/Fs in bottom ashes, cooling unit, filter and glass PUF cartridge 93
4.1.3 PCDD/Fs and PBDD/Fs inhibition by adding calcium oxide 97
4.1.3.1 PCDD/F and PBDD/F concentrations in bottom ashes by adding calcium oxide 97
4.1.3.1.1 PCDD/F concentrations in bottom ashes by adding calcium oxide 97
4.1.3.1.2 PBDD/F concentrations in bottom ashes by adding calcium oxide 101
4.1.3.2 PCDD/F and PBDD/F concentrations in the flue gas by adding CaO during pyrolysis 104
4.1.3.2.1 PCDD/F concentrations in the flue gas by adding CaO during pyrolysis 104
4.1.3.2.2 PBDD/F concentrations in the flue gas by adding CaO during pyrolysis 109
4.1.3.2.3 Mass ratio of the PBDD/F to the PCDD/F in the flue gas by adding CaO during pyrolysis 114
4.1.3.3 Mass distributions of PCDD/Fs and PBDD/Fs by addingCaO during pyrolysis 116
4.1.3.3.1 Mass distributions of PCDD/Fs in bottom ashes, cooling unit, filter, and glass PUF cartridge by adding CaO during pyrolysis 116
4.1.3.3.2 Mass distributions of PBDD/Fs in bottom ashes, cooling unit, filter, and glass PUF cartridge by adding CaO during pyrolysis 119
4.2 Emissions of Polycyclic Aromatic Hydrocarbons from thermal pre-treatment of spent hydrodesulfurization catalysts 122
4.2.1 Composition of spent hydrodesulfurization catalysts 122
4.2.2 Effect of temperature on the PAHs formation 125
4.2.2.1 Characteristics of PAH contents in spent HDS catalysts 125
4.2.2.2 PAH concentrations in thermal treated residues 131
4.2.2.3 PAH concentrations in the flue gas 133
4.2.2.4 The partitions of PAH mass 139
4.2.3 Leaching tests 142
4.3 Recovery of Copper from the Acid-Leachate of Printed Circuit Boards by Electrolysis Process 145
4.3.1 Acid-leachate of P-CBs 145
4.3.2 Metal recovery from acid-leachate 146
4.4 Metal recovery from spent hydrodesulfurization catalysts using a combined acid-leaching and electrolysis process 145
4.4.1 Effects of strong acid leaching parameters on metal leaching yield 152
4.4.1.1 Effect of strong acid leachant on metal leaching yield 152
4.4.1.2 Effect of solid-liquid ratio on metal leaching yield 156
4.4.1.3 Effect of leaching time on metal leaching yield 158
4.4.2 Four-stage leaching procedure 160
4.4.3 Metal recovery from the 1st-stage leachate 162
4.4.4 Economic evaluation for the combined acid-leaching and electrolysis process 166

CHAPTER 5 CONCLUSIONS AND SUGGESTIONS 169
5.1 Conclusions 169
5.2 Suggestions 171
REFERENCES 172
Abe, S.; Funmiaki, K.; Masaharu, O. “Ash Melting Treatment by Rotating Type Surface Melting Furnace”, Waste management, Vol. 16, pp. 431-443, 1996.
Ahlborg, U. G.; Brouwer, A.; Fingerhut, M. A.; Jacobson, J. L.; Jacobson, S. W.; Kennedy, S. W.; Kettrup, A. A. F.; Koeman, J. H.; Poiger, H.; Rappe, C.; Safe, S. H.; Seegal, R. F.; Tuomisto, J.; Vandenber, G. M. “Impact of polychlorinated dibenzo-p-dioxins, dibenzofurans, and biphenyls on human and environmental-health, with special emphasis on application of the toxic equivalency factor concept”, European Journal of Pharmacology, Vol. 228, pp. 179-199, 1992.
Alcock, R. E.; Sweetman, A. J.; Jones, K. C. “A congener-specific PCDD/F emissions inventory for the UK: do current estimates account for the measured atmospheric burden?”, Chemosphere, Vol. 43, pp. 183-194, 2001.
Angelidis, T. N.; Tourasanidis, E.; Marinou, E.; Stalidis, G. A. “Selective dissolution of critical metals from diesel and naptha spent hydrodesulfurization catalysts”, Resourse Conservation Recycling, Vol. 13, pp. 269-282, 1995.
Anselstetter, V.; Heimpel, H. “Acute hematotoxicity of oral benzo(a)pyrene: the role of the Ah locus”, Acta haematologica Basel, Vol. 76, pp. 217-223, 1986.
Atkinson, R. “Atmosphere lifetimes of dibenzo-p-dioxins and dibenzofurans”, The science of the total environment, Vol. 104, pp. 17-33, 1991.
Atkinson, R. “Atmosphere chemistry of PCBs, PCDDs and PCDFs”, Issues in environmental science and technology, Vol. 6, pp. 53-72, 1996.
Badger, G. M. “The chemical basis of carcinogenic activity”, Charles C. Thomas, Springfield, Illinois, 1962.
Baek, S. O.; Field, R. A.; Goldstone, M. E.; Kirk, P. W.; Lester, J. N.; Perry, R. “A review of atmospheric polycyclic aromatic hydrocarbons: sources, fate and behavior”, Water, air, and soil pollution, Vol. 60, pp. 279-300, 1991.
Ballschmiter, K.; Zoller, W.; Buchert, H.; Class, T. F. Z. Analytical Chemistry, Vol. 322, pp. 587, 1985.
Bard, A. J.; Faulkner, L. R. Electrochemical Methods, Wiley, New York, 1980.
Birnbaum, L. S. “Endocrine effects of prenatal exposure to PCBs, dioxins and other xenobiotics: implications for policy and future research”, Environmental health perspectives, Vol. 102, pp. 676-679, 1994.
Birnbaum, L. S.; Staskal, D. F.; Diliberto, J. J. “Health effects of polybrominated dibenzo-p-dioxins (PBDDs) and dibenzofurans (PBDFs)”, Environmental International, Vol. 29, pp. 855-860, 2003.
BjØrseth, A. “Handbook of polycyclic aromatic hydrocarbons”, Marcel Dekker Inc., New York, Vol. 1, 1983.
Bodénan, F.; Deniard, Ph. “Characterization of flue gas cleaning residues from European solid waste incinerators: assessment of various Ca-based sorbent processes”, Chemosphere, Vol. 51, pp. 335-347, 2003.
Bossert, I. P.; Bartha, R. “Structure-biodegradability relationships of polycyclic aromatic hydrocarbons in soil”, Bulletin of environmental contamination and toxicology, Vol. 37, pp. 490-495, 1986.
Boubel, R. W.; Ripperton, L. A. “Benxo[a]pyrene production during controlled combustion”, Journal of air pollutant control association, Vol. 13, pp. 553-557, 1963.
Buekens, A.; Huang, H. “Comparative evaluation of techniques for controlling the formation and emission of chlorinated dioxins/ furans in municipal waste incineration”, Journal of hazardous materials, Vol. 62, pp. 1-33, 1998.
Caponero, J.; Tenório, J. A. S.; Levendis, Y. A.; Carlson, J. B. “Emissions of batch combustion of waste tire chips: the afterburner effect”, Energy and fuel, Vol. 17, pp. 225-239, 2003.
Choi, J. Y.; Kim, D. S. “Production of ultrahigh purity copper using waste copper nitrate solution”, Journal of hazardous materials B, Vol. 99, pp. 147-158, 2003.
Coleman, P. J.; Lee, R. G. M.; Alcock, R. E.; Jones, K. C. “Observations on PAH, PCB, and PCDD/F trends in U.K. urban air 1991-1995”, Environmental science and technology, Vol. 31, pp. 2120-2124, 1997.
De Lima, T. S.; Campos, P. C.; Afonso, J. C. “Metals recovery from spent hydrotreatment catalysts in a fluoride-bearing medium”, Hydrometallurgy, Vol. 80 pp. 211–219, 2005.
Department of the Environment (UK) Risk Assessment of Dioxin Releases from Municipal Waste Incineration Processes, HMIP/CPR2/41/1/181, HMSO, London, 1996.
Dickson, L. C.; Lenoir, D.; Hutzinger, O. “Surface-catalyzed Formation of Chlorinated Dibenzodioxins and Dibenzofurans during Incineration”, Chemosphere, Vol. 19, pp. 277-282, 1989.
Dickson, L. C.; Lenoir, D.; Hutzinger, O. “Quantitative Comparison of de Novo and Formation of Polychlorinated Dibenzo-p-dioxins under Simulated Municipal Solid Waste Incinerator Postcombustion Conditions”, Environmental Science and Technology, Vol. 26, pp. 1822-1828, 1992.
Donnelly, J. R.; Grange, A. H.; Nunn, N. J. Scvocool, G. W.; Brumley, W. C.; Mitchum, R. K. “Analysis of thermoplastic resins for brominated dibenzofurans”, Biomedical and environmental mass spectrometry, Vol. 18, pp. 884-896, 1989.
Ebert, J.; Bahadir, M. “Formation of PBDD/F from flame-retarded plastic materials under thermal stress”, Environment international, Vol. 29, pp. 711-716, 2003.
Environmental Protection Agency (EPA), “Health effects assessment for polycyclic aromatic hydrocarbons (PAHs)”, EPA 549/1-86-013, Environmental criteria and assessment office, Cincinnati, OH, 1984.
Environmental Health Criteria 205, “Polybrominated Dibenzop-dioxins and Dibenzofurans; International Program on Chemical Safety”, World Health Organization: Geneva, Switzerland, 1998.
Everaert, K.; Baeyens, J. “The Formation and Emission of Dioxins in Large Scale Thermal Processes”, Chemosphere, Vol. 46, pp. 439-448, 2002.
Fähnrich, K. A.; Pravda, M.; Guilbault, G. G. “Immunochemical detection of polycyclic aromatic hydrocarbons (PAHs)”, Analytical letters, Vol. 35, pp. 1269-1300, 2002.
Finlayson-Pitts, B. J.; Pitts Jr., J. N. “Tropospheric air pollution: ozone, airborne toxics, polycyclic aromatic hydrocarbons, and particles”, Science, Vol. 276, pp. 1045-1052, 1997.
Frooese, K. L.; Hutzinger, O. “Polychlorinated benzene, phenol, dibenzo-p-dioxin, and dibenzofuran in heterogeneous combustion reactions of acetylene”, Environmental science and technology, Vol. 30, pp. 998-1008, 1996.
Gullett, B. K.; Bruce, K. R.; Beach, L. O.; Drago, A. M. “Mechanistic steps in the production of PCDD and PCDF during waste combustion”, Chemosphere, Vol. 25, pp. 1387-1392, 1992.
Hanari, N.; Kannan, K.; Miyake, Y.; Okazawa, T.; Kodavanti, P. R. S.; Aldous, K. M.; Yamashita, N. “Occurrence of polybrominated biphenyls, polybrominated dibenzo-p-dioxins, and polybrominated dibenzofurans as impurities in commercial polybrominated diphenyl ether mixtures”, Environmental science and technology, Vol. 40, pp. 4400-4405, 2006.
Heinbuch, V.; Stieglitz, L. “Formation of brominated compounds on fly ash”, Chemosphere, Vol. 27, pp. 317-324, 1993.
Hochstein, J. R.; Aulierich, R. J.; Bursian, S. J. “Acute toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin to mink”, Archives of environmental contamination and toxicology, Vol. 17, pp. 33-37, 1988.
Huang, H.; Buekens, A. “On the mechanisms of dioxin formation in combustion processes”, Chemosphere, Vol. 31, pp. 4099-4117, 1995.
Hutzinger, O.; Blumich, M. J.; van der Berg, M.; Olie, K. “Sources and fate of PCDDs and PCDFs: an overview”, Chemosphere, Vol. 14, pp. 581-600, 1985.
Hutzinger, O.; Dumler, R.; Lenoir, D.; Teufl, C.; Thoma, H. “PBDD and PBDF from brominated flame retardants: combustion equipment, analytical methodology and synthesis of standards”, Chemosphere, Vol. 18, pp. 1235-1242, 1989.
Hyötyläinen, T.; Hartonen, K. “Determination of brominated flame retardants in environmental samples”, Trends in Analytical Chemistry, Vol. 21, pp. 13-19, 2001.
Ilsen, A.; Briet, J. M.; Koppe, J. G.; Pluim, H. J.; Oosting, J. “Signs of enhanced meoromotor maturation in children due to perinatal load with background levels of dioxins”, Chemosphere, Vol. 33, pp. 1317-1326, 1996.
International Agency for Research on Cancer (IRAC). “Monographs on the evaluation of carcinogenic risks to humans,” Vol. 69, Polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans, International agency for research on cancer, Lyon, 1997.
International Occupational Safety and Health Information Centre, Metals, In Basics of Chemical Safety, Chapter 7, Geneva: International Labour Organization, 1999.
Jackson, J. A.; Diliberto, J .J.; Birnbaum, L. S. “Estimation of octanol-water partition coefficients and correlation with dermal absorption for several polyhalogenated aromatic hydrocarbons”, Fundamental and applied toxicology, Vol. 21, pp. 334-344, 1993.
Janssen, L. J. J.; Koene, L. “The role of electrochemistry and electrochemical technology in environmental protection”, Chemical engineering journal, Vol. 85, pp. 137–146, 2002.
Jones, K. C.; Sanders, G.; Wild, S. R.; Burnett, V. B.; Johnston, A. E. “Enidence for the decline in PCBs and PAHs in rural UK vegetation and air”, Nature, Vol. 356, pp. 137-140, 1992.
Khalili, N. R.; Scheff, P. A.; Holsen, T. M. “PAH source fingerprints for coke ovens, diesel and gasoline engines, highway tunnels, and wood combustion emissions”, Atmosphere environment, Vol. 29, pp. 533-542, 1995.
Kim, B.-H.; Lee, S.-J.; Mun, S.-J.; Chang, Y.-S. “A case study of dioxin monitoring in and around an industrial waste incinerator in Korea”, Chemosphere, Vol. 58, pp. 1589-1599, 2005.
p, T.; Akita, S.; Kobayashi, N.; Nii, S.; Kawaizumi, F.; Takahashi, K. “Metal recovery from non-mounted printed writing boards via hydrometall urgical processing”, Hydrometallurgy, Vol. 69, pp. 73-79, 2003.
Kogevinas, M. “Human health effects of dioxins: cancer, reproductive and endocrine system effects”, European society of human reproduction and embryology, Vol. 7, pp. 331-339, 2001.
Kuo, Y. M.; Lin, T. C.; Tsai, P. J.; Lee, W. J.; Lin, H. Y. “Fate of polycyclic aromatic hydrocarbons during vitrification of incinerator ash in a coke bed furnace”, Chemosphere, Vol. 51, pp. 313-319, 2003.
Kuo, Y. M.; Lin, T. C.; Tsai, P. J. “Metal behavior during vitrification of incinerator ash in a coke bed furnace”, Journal of hazardous materials B, Vol. 109, pp. 79-84, 2004.
Kutz, F. W.; Barnes, D. G.; Bottimore, D. P.; Greim, H.; Bretthauer, E. W. “The international toxicity equivalency factor (I-TEF) method for risk assessment for complex mixtures of dioxins and related compounds”, Chemosphere, Vol. 20, pp. 751-757, 1990.
Lee, M.-S.; Ahn, J.-G.; Ahn, J.-W. “Recovery of cooper, tin and lead from the spent nitric etching solutions of printed circuit board and regeneration of the etching solution”, Hydrometallurgy, Vol. 70, pp. 23-29, 2003.
Lee, R. G. M.; Green, N. J. L.; Lohmann, R.; Jones, K. C. “Seasonal, anthropogenic, air mass, and meteorological influences on the atmospheric concentrations of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs): evidence for the importance of diffuse combustion sources”, Environmental science and technology, Vol. 33, pp. 2864-2871, 1999.
Li, C. T.; Lee, W. J.; Mi, H. H.; Su, C. C. “PAH emission from the incineration of waste oily sludge and PE plastic mixtures”, Science of total environment, Vol. 170, pp. 171-183, 1995.
Liu, K. L.; Xie, W.; Zhao, Z. B.; Pan, W. P.; Riley, J. T. “Investigation of polycyclic aromatic hydrocarbons in fly ash from fluidized bed combustion systems”, Environmental science and technology, Vol. 34, pp. 2273-2279, 2000.
Liu, M.; Rechnitz, G. A.; Li, K.; Li, Q. X. “Capacitive immunosensing of polycyclic aromatic hydrocarbon and protein conjugates”, Analytical letters, Vol. 31, pp. 2025-2038, 1998.
Lohmann, R.; Jones, K. C. “Dioxins and furans in air and deposition: A review of levels, behaviour and processes”, The Science of Total Environment, Vol. 219, pp. 53-81, 1998.
Lombaert, K.; Le Moyne, L.; De Maleissye, J. T.; Amouroux, J. “Experimental study of PAH in engine soot by isotopic tracing”, Combustion Science and Technology, Vol. 178, pp. 707-728, 2006.
Luckey, T. D.; Venugopal, B.; Hutcheson, D. “Heavy metal toxicity, safety, and hormology”, Academic press, New York, USA, 1975.
Luijk, R.; Dorland, C.; Smit, P.; Jansen, J.; Govers, H. A. J. “The role of bromine in the de novo synthesis in a model fly ash system”, Chemosphere, Vol. 28, pp. 1299-1309, 1994.
Luijk, R.; Wever, H.; Olie, K.; Govers, H. A. J. “The influence of the polymer matrix on the formation of polybrominated dibenzo-p-dioxins (PBDD) and dibenzofurans (PBDFs)”, Chemosphere, Vol. 23, pp. 1173-1183, 1991.
Lundin, L.; Marklund, S. “Thermal degradation of PCDD/Fs, PCB and HCB in municipal solid waste ash”, Chemosphere, Vol. 67, pp. 474–481, 2007.
Maliszewska-Kordybach, B. “Sources, concentrations, fate and effects of polycyclic aromatic hydrocarbons (PAHs) in the environment. Part A: PAHs in air”, Polish journal of environmental studies, Vol. 8, pp. 131-136, 1999.
Mastral, A. M.; Alvarez, R.; Callen, M. S.; Clemente, C.; Murillo, R. “Characterization of chars from coal-tire copyrolysis”, Industral and engineering chemistry research, Vol. 38, pp. 2856-2860, 1999.
McAllister, D. L.; Mazac, C. J.; Gorsich, R.; Freiberg, M.; Tondeur, Y. “Analysis of polymers containing brominated diphenylethers as flame retardants after molding under various conditions”, Chemosphere, Vol. 20, pp. 1537-1541, 1990.
Mckay, D.; Shiu, W. Y.; Ma, K. C. “Illustrated handbook of physical-chemical properties and environmental fate for organic chemicals Vol. II polynuclear aromatic hydrocarbons, polychlorinated dioxins and dibenzofurans”, Boca Raton, Florida: Lewis Publishers, 1991.
McKay, G. “Dioxin Characterisation, Formation and Minimisation during Municipal Solid Waste (MSW) Incineration: Review”, Chemical Engineering Journal, Vol. 86, pp. 343-368, 2002.
Mennear, J. H.; Lee, C.-C. “Polybrominated dibenzo-p-dioxins and dibenzofurans: literature review and health assessment”, Envirenmental health perspectives supplements, Vol. 102, pp. 265-274, 1994.
Mi, H. H.; Lee, W. J.; Chen, C. B.; Yang, H. H.; Wu, S. J. “Effect of fuel aromatic content on PAH emission from a heavy-duty diesel engine”, Chemosphere, Vol. 41, pp. 1783-1790, 2000.
Miller, G. C.; Hebert, V. R.; Miille, M. J.; Mitzel, R.; Zepp, R. G. “Photolysis of octachlorodibenzo-p-dioxin on soils: production of 2,3,7,8-TCDD”, Chemosphere, Vol. 18, pp. 1265-1274, 1989.
Milligan, M. S.; Altwicker, E. “The Relationship between de Novo Synthesis of Polychlorinated Dibenzo-p-dioxins and Dibenzofurans and Low-Temperature Carbon Gasification in Fly Ash”, Environmental Science and Technology, Vol. 27, pp.1595-1601, 1993.
Mukerjee, D. “Health impact of polychlorinated dibenzo-p-dioxins: a critical review”, Journal of the air & waste management association, Vol. 48, pp. 157-165, 1995.
National Academy of Sciences, “Particulate polycyclic organic matter”, National academy press, Washington DC, USA, 1972.
Nielsen, T.; Ramdahl, T.; BjØrseth, A. “The fate of airbone polycyclic organic matter”, Environmental health perspectives, Vol. 47, pp. 103-114, 1983.
Nisbet, C.; LaGoy, P. “Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs)”, Regulatory toxicology and pharmacology, Vol. 16, pp. 290-300, 1992.
Oh, J. E.; Lee, K. T.; Lee, J. W.; Chang, Y. S. “The Evaluation of PCDD/Fs from Various Korean Incinerators”, Chemosphere, Vol. 38, pp. 2097-2108, 1999.
Olson, J. R.; McGarrgle, B. P. “Comparative development toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)”, Chemosphere, Vol. 25, pp. 71-74, 1992.
Orhan, G.; Arslan, C.; Bombach, H.; Stelter, M. “Nickel recovery from the rinse waters of plating baths”, Hydrometallurgy, Vol. 65, pp. 1–8, 2002.
Park, S. S.; Kim, Y. J.; Kang, C. H. “Atmospheric polycyclic aromatic hydrocarbons in Seoul, Korea”, Atmospheric Environment, Vol. 36, pp. 2917-2924, 2002.
Petry, T.; Schmid, P.; Schlatter, C. “The use of toxic equivalency factors in assessing occupational and environmental health risk associated with exposure to airborne mixtures of polycyclic aromatic hydrocarbons (PAHs)”, Chemosphere, Vol. 32, pp. 639-648, 1996.
Pozzoli, L.; Giladoni, S.; Perrone, M. G.; De Gennaro, G.; De Riezao, M.; Vione, D. “Polycyclic aromatic hydrocarbons in the atmosphere: monitoring, sources, sinks and fate. I: Monitoring and sources”, Annali di chimica, Vol. 94, pp. 17-33, 2004.
Quaß, U.; Fermann, M. W.; Bröker, G. “Steps Towards A European Dioxin Emission Inventory”, Chemosphere, Vol. 40, pp. 1125-1129, 2000.
Roda, A.; Bacigalipo, M. A.; Ius, A.; Minutello, A. “Development and application of an ultrasensitive quantitative enzyme immuno-assay for benzo[a]pyrene in environmental samples”, Environmental technology,
Safe, S. “Polychlorinated biphenyls (PCBs), dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs) and related compounds: Environmenral and mechanistic considerations which support the development of toxic equalency factors (TEFs)”, Critical Reviews in Toxicology, Vol. 21, pp. 51-88, 1990.
Safe, S.; Hutzinger, O.; Hill, T. A. “Polychlorinated dibenzo-p-dioxins and –furans (PCDDs/PCDFs): sources and environmental impact, epidemiology, mechanisms of action, health risks”, Springer-Verlag Berlin Heidelberg, New York, 1990.
Sakai, S.; Watanabe, J.; Honda, Y.; Takatsuki, H.; Aoki, I.; Furamatsu, M.; Shiozaki, K. “Combustion of brominated flame retardants and behavior of its byproducts”, Chemosphere, Vol. 42, pp. 519-531, 2001.
Sastre, J.; Sahuquillo, A.; Vidal, M.; Rauret, G. “Determination of Cd, Cu, Pb and Zn in environmental samples: Microwave-assisted total digestion versus aqua regia and nitric acid extraction”, Analytica Chimica Acta, Vol. 462, pp. 59–72, 2002.
Schwetz, B. A.; Norris, J. M.; Sparschu, G. L.; Rowe, V. K.; Gehring, P. J.; Emerson, J. L.; Gehring, C. G. “Toxicity of chlorinated dibenzo-p-dioxins”, Environmental health perspectives, Vol. 5, pp. 87-99, 1973.
Sheffield, A. “Polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurnas (PCDFs): sources and releases”, Environmental protection service report, Minister of supply and services, Canada, 1985.
Sidhu, S. S.; Maqsud, L.; Dellinger, B.; Mascolo, G. “The homogeneous, gas-phase formation of chlorinated and brominated dibenzo-p-dioxin from 2,4,6-trichloro- and 2,4,6-tribromophenols”, Combustion and flame, Vol. 100, pp. 11-20, 1995.
Snoeyink, V. L.; Jenkins, D. “Water chemistry”, Wiley, New York, pp. 368, 1980.
Söderström, G.; Marklund, S. “PXDD and PXDF from combustion of bromoflameretardant containing MSW”, Organohalogen compounds, Vol. 47, pp. 225-228, 2000.
Söderström, G.; Marklund, S. “PBCDD and PBCDF from incineration of waste-containing brominated flame retardants”, Environmental science and technology, Vol. 36, pp. 1959-1964, 2002.
Söderström, G.; Marklund, S. “Formation of PBCDD and PBCDF during flue gas cooling”, Environmental science and technology, Vol. 38, pp. 825-830, 2004.
Snoeyink, V. L.; Jenkins, D. Water chemistry, Wiley, New York, 1980.
Stanmore, B.R. “The formation of dioxins in combustion systems”, Combustion and flame, Vol. 136, pp. 398-427, 2004.
Striebich, R. C.; Rubey, W. A.; Tirey, D. A.; Dellinger, B. “High temperature degradation of polybrominated flame retardant materials”, Chemosphere, Vol. 23, pp. 1197-1204, 1991.
Sun, D. D.; Chang, L.; Tay, J. H.; Navratil, J. D.; Easton, C. “Recovery and marine clay stabilization of heavy metals present in spent hydrotreating catalysts”, Journal of Environmental Engineering, Vol. 127, pp. 916–921., 2001.
Tagashira, K.; Torii, I.; Myouyou, K.; Takeda, K.; Mizuko, T.; Tokushita, Y. “Combustion characteristics and dioxin behavior of waste fired CFB”, Chemical Engineering Science, Vol. 54, pp. 5599-5607, 1999.
Taiwan Environmental Protection Administration, http://waste.epa.gov.tw/prog/IndexFrame.asp
Takasuga, T.; Makino, T.; Tsubota, K.; Takeda, N. “Formation of dioxins (PCDDs/PCDFs) by dioxin-free fly ash as a catalyst and relation with several chlorine-sources”, Chemosphere, Vol. 40, pp. 1003-1007, 2000.
Tancell, P. J.; Rhead, M. M.; Pemberton, R. D.; Braven, J. “Survival of polycyclic aromatic-hydrocarbons during diesel combustion”, Environmental science and technology, Vol. 29, pp. 2871-2876, 1995.
Thomas, J. F.; Mukai, M.; Tebbens, B. D. “Ftae of airbone benzo[a]pyrene”, Environmental science and technology, Vol. 2, pp. 33, 1968.
Thoma, H.; Rist, S.; Hauschulz, G.; Hutzinger O. “Polybrominated dibenzodioxins (PBrDD) and dibenzofurans (PBrDF) in some flame retardant preparations”, Chemosphere, Vol. 15, pp. 2111-2113, 1986.
Thoma, H.; Hauschulz, G.; Knorr, E.; Hutzinger, O. “Polybrominated dibenzofurans (PBDF) and dibenzodioxins (PBDD) from the pyrolysis of neat brominated diphenylethers, biphenyls and plastic mixtures of these compounds”, Chemosphere, Vol. 16, pp. 277-285, 1987a.
Thoma, H.; Hausschulz, G.; Hutzinger, O. “PVC induced chlorine-bromine exchange in the pyrolysis of polybrominated diphenylethers, -biphenyls, -dibenzodioxins and dibenzofurans”, Chemosphere, Vol. 16, pp.297-307, 1987b.
Tsai, P. J.; Shieh, H. Y.; Lee, W. J.; Lai, S. O. “Characterization of PAHs in the atmosphere of carbon black manufacturing workplaces”, Journal of Hazardous Materials, Vol. A91, pp. 25-42, 2002.
Tuppurainen, K.; Halonen, I.; Puokojärvi, P.; Tarhanen, J.; Ruuskanen, J. “Formation of PCDDs and PCDFs in municipal waste incineration and its inhibition mechanisms: a review”, Chemosphere, Vol. 36, pp. 1493-1511, 1998.
US EPA, Interim procedures for estimating risks associated with exposures to mixtures of chlorinated dibenzo-p-dioxins and –dibenzofurans (CDDs and CDFs) and 1989 update, EPA/625/3-89/016, 1989.
US EPA, Health Assessment Document for 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) and Related Compounds. EPA/600/Bp-92/001c Estimating Exposure to Dioxin-Like Compounds, EPA/600/6-88/005Cb, Office of Research and Development, Washington, DC, 1994a.
US EPA, Combustion Emissions Technical Resource Document (CETRED), Report No. EPA 530-R-94-014, Washington, DC, 1994b.
US EPA, The inventory of sources of dioxin in the united states, Review draft, EPA/600/P, 98002Aa (NTIS PB98-137037), National centre for environmental assessment, Washington, DC, 1998.
US EPA, Exposure and Human Health Reassessment of 2,3,7,8-Tetrachlorodibenzo-p-Dioxin (TCDD) and Related Compounds National Academy Sciences (NAS) Review Draft, EPA/600/P-00/001Bb, 2000.
Van den Berg, M.; Birnbaum, L.; Bosveld, A. T. C.; Brunstrom, B.; Cook, P.; Feeley, M.; Giesy, J. P.; Hanberg, A.; Hasegawa, R.; Kennedy, S. W.; Kubiak, T.; Larsen, J. C.; van Leeuwen, F. X. R.; Liem, A. K. D.; Nolt, C.; Peterson, R. E.; Poellinger, L.; Safe, S.; Schrenk, D.; Tillit, D.; Tyskland, M.; Younes, M.; Waern, F.; Zacharewski, T. “Toxic equivalency factors (TEFs) for PCBs, PCDDs, PCDFs for humans and wildlife”, Environmental Health Perspect, Vol. 106, pp. 775–792, 1998.
Van den Berg, M.; Birnbaum, L. S.; Denison, M.; De Vito, M.; Farland, W.; Feeley, M.; Fiedler, H.; Hakansson, H.; Hanberg, A.; Haws, L.; Rose, M.; Safe, S.; Schrenk, D.; Tohyama, C.; Tritscher, A.; Tuomisto, J.; Tysklind, M.; Walker, N.; Peterson, R. E. “The 2005 world health organization reevaluation of human and mammalian toxic equivalency factors for dioxins and dioxin-like compounds”, Toxicological sciences, Vol. 93, pp. 223-241, 2006.
Van Jaarsveld, J. A.; Van Pul, W. A. J.; De Leeuw, F. “Modeling transport and deposition of persistent organic pollutants in the Europe region”, Atmospheric environment, Vol. 31, pp. 1011- 1024, 1997.
Vehlow, J.; Bergfeldt, B.; Jay, K.; Seifert, H.; Wanke, T.; Mark, F. E. “Thermal treatment of E+E waste plastics”, Waste management and research, Vol. 18, pp. 131-140, 2000.
Ven Leeuwen, F. X. R.; Feeley, M.; Schrenk, D.; Larsen, J. C.; Farland, W.; Younes, M. “Dioxins: WHO’s Tolerable Daily Intake (TDI) Revisited” Chemosphere, Vol. 40, pp. 1095-1101, 2000.
Wang, J.; Levendis, Y. A.; Richter, H.; Howard, J. B.; Carlson, J. “Polycyclic aromatic hydrocarbon and particulate emissions from two-stage combustion of polystyrene: The effect of the primary furnace temperature”, Environmental science and technology, Vol. 35, pp. 3541-3552, 2001.
Wang, L. C.; Chang-Chien, G. P. “Characterizing the emissions of polybrominated dibenzo-p-dioxins and dibenzofurans from municipal and industrial waste incineratiors”, Environmental science and technology, Vol. 41, pp. 1159-1165, 2007.
Wania, F.; Mackey, D. “Tracking the distribution of persistent organic pollutants”, Environmental science and technology, Vol. 30, pp. 390-396, 1996.
Watanabe, I.; Kawano, M. “Brominated flame retardants and their environmental behavior”, In: IEA ISWMG/JWRF Seminar on Integrated Solid Waste Management, Vol. 11, 1991.
Watanabe, I.; Kawano, M.; Tatsukawa, R. “Polybrominated and mixed polybromo/chlorinated dibenzo-p-dioxins and -dibenzofurans in the Japanese environment”, Organohalogen Compound, Vol. 24, pp. 337–340, 1995.
Watanabe, I.; Sakai, S. “Environmental release and behavior of brominated flame retardants”, Environment international, Vol. 29, pp. 665-682, 2003.
Weber, L. W. D.; Greim, H. “The toxicity of brominated and mixed-halogenated dibenzo-p-dioxins and dibenzofurans: an overview”, Journal of toxicology and environmental health, Vol. 50, pp. 195-215, 1997.
Weber, R.; Kuch, B. “Relevance of BFRs and thermal conditions on the formation pathways of brominated and brominated-chlorinated dibenzodioxins and dibenzofurans”, Environment international, Vol. 29, pp. 699-710, 2003.
Wenborn, M. J.; Coleman, P. J.; Passant, N. R.; Lymberidi, E.; Sully, J.; Weir, R. A. “Speciated PAH Inventory for the United Kingdom”, Report AETA 3512, AEA Technology, http://www.airquality.co.uk/archive/reports/list.php, 1999.
WHO regional office for Europe, “Polycyclic aromatic hydrocarbons (PAHs)”, In: air quality guideline for Europe, WHO regional office for Europe, Copenhagen, Denmark, 1987.
WHO, Polybrominated diphenylethers. Environmental Health Criteria 162, IPCS International Program on Chemical Safety, World Health Organization, Geneva, 1994.
WHO, Health criteria for polychlorinated dibenzo-para-dioxins and dibenzofurnas, IPCS International Program on Chemical Safety, World Health Organization, Geneva, 1997.
Wiberg, K.; Rappe, C.; Haglund, P. “Analysis of bromo-, chloro- and mixed bromo/chloro-dibenzo-p-dioxins and dibenzofurans in salmon, osprey and human milk”, Chemosphere, Vol. 24, pp. 1431-1439, 1992.
Wichmann, H.; Dettmer, F.T.; Bahadir, M. “Thermal formation of PBDD/F from tetrabromobisphenol A-a comparison of polymer linked TBBP A with its additive incorporation in thermo plastics”, Chemosphere, Vol. 47, pp. 1493-1511, 2002.
Wild, S. R.; Berrow, M. L.; Jones, K. C. “The persistence of polynuclear aromatic hydrocarbons (PAHs) in sewage sludge-amended agricultural soils”, Environmental pollution, Vol. 72, pp. 141-157, 1991a.
Wild, S. R.; Jones, K. C. “Polybuclear aromatic hydrocarbons in the United Kingdom environment: a preliminary source inventory and budget”, Environmental pollution, Vol. 88, pp. 91-108, 1995.
Yang, G. C. C.; Tsai, C. M. “A study on heavy metal extractability and subsequent recovery by electrolysis for a municipal incinerator fly ash”, Journal of hazardous material, Vol. 58, pp. 103-120, 1998.
Yang, C.-C. “Recovery of heavy metals from spent Ni-Cd batteries by a potentiostatic electrodeposition technique”, Journal of Power Sources, Vol. 115, pp. 352–359, 2003.
Yang, H. H.; Lee, W. J.; Chen, S. J.; Lai, S. O. “PAH emission from various industrial stacks”, Journal of hazardous material, Vol. 60, pp. 159-174, 1998.
Zier, B.; Lahaniatis, D.; Bieniek, D.; Kettrup, A. “Surface catalyzed halogenation–dehalogenation reactions of aromatic bromine compounds adsorbed on fly ash”, Chemosphere, Vol. 22, pp. 1121-1129, 1991.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊