跳到主要內容

臺灣博碩士論文加值系統

(35.172.136.29) 您好!臺灣時間:2021/07/29 08:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張詠翔
研究生(外文):Yung-Hsiang Chang
論文名稱:以紅壤高溫去除煤炭氣化氣中硫化氫及硫化羰之研究
論文名稱(外文):High-Temperature Sorption of Hydrogen Sulfide and Carbonyl Sulfide from Coal Derived Gas by Red Soils
指導教授:朱信朱信引用關係
指導教授(外文):Hsin Chu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:環境工程學系碩博士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
畢業學年度:96
語文別:中文
論文頁數:146
中文關鍵詞:除硫硫化羰硫化氫氣化氣紅壤
外文關鍵詞:red soilcarbonyl sulfidesyngassulfur removalhydrogen sulfide
相關次數:
  • 被引用被引用:0
  • 點閱點閱:221
  • 評分評分:
  • 下載下載:41
  • 收藏至我的研究室書目清單書目收藏:0
隨著人口的增加與科技的進步,石油及天然氣等能源逐漸枯竭短缺,故未來在使用燃煤發電技術會明顯增加。煤礦是蘊藏量最豐富的化石能源,如何潔淨使用煤礦已是世界各國爭相探討的課題。煤炭氣化複循環發電技術(IGCC)無論在技術成熟性、能源效率及環保性能都很卓越,因此將會是未來發電的主流之ㄧ。現在商業運轉之大型煤炭氣化複循環發電機組皆使用溼式商業化之除硫程序,但其用水量大,而使得熱效率降低,為提高熱效率,降低發電及環保成本,利用高溫乾式除硫方法將是未來的趨勢。
本研究探討以紅壤為高溫吸收劑來處理硫化氫(H2S)/硫化羰(COS),研究成果分成下列幾點說明:
1. 由實驗結果顯示,老埤紅壤對H2S及COS有最好的處理效果,其處理效果和紅壤中鐵含量有顯著的關係。
2.經過十次脫硫再生實驗後,發現老埤紅壤之脫硫效果沒有顯著地下降,故可多次循環再生使用,以減少消耗。
3. 經由不同的操作溫度對於以老埤紅壤同時去除H2S及COS之影響實驗可以發現,最佳的操作溫度應為500 ~ 600℃左右。
4. 觀察操作參數對於老埤紅壤除硫效能之影響,發現一氧化碳濃度增加、氫氣濃度減小會增加紅壤利用率,這可能和Water-gas shift reaction有關;而空間流速在2,000 ~ 6,000 mL/hr/g之間時脫硫容量受空間流速影響不大;H2S及COS進流濃度對紅壤利用率無顯著之影響。
5. 由氧化/還原氣氛之熱重分析觀察老埤紅壤的重量變化發現,還原氣氛下,Fe2O3於高溫下會被還原為低氧化數的鐵氧化物及鐵;氧化氣氛下,發現有部分脫硫後之產物FeS會先轉為FeSO4,之後才繼續氧化成為Fe2O3。
6. 利用FTIR即時監測脫硫反應中,觀察氣相的反應物及生成物的變化情形。並在各種不同條件下,去推測脫硫反應的機制。結果可知在脫硫的過程中,會伴隨著許多副產物(CO2、CS2、SO2)的生成,並且可知氫氣和一氧化碳對脫硫反應有很大的影響。
7. 由動力研究發現,單獨去除COS之第一型衰退模式所求得之活化能為121.4 kJ/mol,碰撞因子A = 2.14 × 1013,第二型衰退模式所求得之活化能為66.2 kJ/mol,碰撞因子A = 7.45 × 108。第一型及第二型皆能成功預測。
With the increase of the population and demands for better life in the world, the energy, such as petroleum and natural gas, are exhausted. So the use of coal-burning power will increase obviously in the future. The coal is the most abundant energy in the world, how to use the coal cleanly is already the top issue in many countries. Integrated Gasification Combined Cycle (IGCC) is one of the ideal techniques to solve the energy problem environmentally and economically. This technology will become the main stream of power supply in the future. Nowadays, all commercial IGCC power plants utilize wet desulfurization processes to remove H2S from hot syngas. But they have to use large amount of water and, thus, decrease the thermal efficiency of the system. In order to solve this problem, the high temperature desulfurization by dry techniques is a trend for related fields.
Desulfurization of syngas by means of red soils containing metal oxides were taken into account in this research. Results of this study are described as follows:
1. Experimental results reveal that the Loupi red soil is the best among various soils for the removal of H2S and COS from hot syngas. The removal efficiency is closely related to the iron content of the soil.
2. No significant deactivation occurs to the Loupi red soil after ten sorption/regeneration cycles. So the Loupi red soil can be reused after the oxidation treatment.
3. The optimal operating temperatures ranged from 500 - 600℃ are suitable for using red soils.
4. The effects of operating parameters on the removal of H2S and COS were performed. Results indicate that the breakthrough time increases with the CO concentration and decreases with the H2 concentration. This can be explained through the water-gas shift reaction. Space velocity between 2,000~6,000 mL/hr/g, concentration of H2S and concentration of COS have no significant effect on the soil utilization.
5. Under reduction conditions, Fe2O3 sorbent will be reduced to low-activity iron oxides. Under oxidation conditions, the sulfurated ferrite sorbent will be oxidized to FeSO4 first. It will be further oxidized to the ferrite sorbent.
6. To obtain more information on gas phase changes during the sorption experiment, outlet gases were monitored and recorded through on-line FTIR at various periods. It will produce many by-products like CO2, CS2 and SO2. CO and H2 play a very important role in this system.
7. In the operating ranges of this study, it can be found that the COS activation energy, Ea, is 121 kJ/mol and the frequency factor, A, is 2.14 × 1013 from the type I deactivation model. The activation energy, Ea, is 66.2 kJ/mol and the frequency factor, A, is 7.45 × 108 from the type II deactivation model. Both type I and type II model can successfully describe the COS/red soil reaction kinetics.
摘要 I
Abstract III
本論文之符號定義 V
目錄 A
表目錄 E
圖目錄 G
第一章 前言 1
1-1 研究動機 1
1-2 研究內容與架構 3
第二章 文獻回顧 5
2-1 IGCC技術簡介 5
2-2 H2S及COS之特性 7
2-2.1 H2S之來源 7
2-2.2 H2S之性質 7
2-2.3 H2S之危害 9
2-2.4 COS之來源 11
2-2.5 COS之性質 11
2-2.6 COS之危害 13
2-3 H2S及COS之控制技術 14
2-3.1 H2S之控制技術 14
2-3.2 COS之控制技術 20
2-4 吸收劑特性 23
2-5 吸收劑之選擇 25
2-5.1 單一金屬氧化物吸收劑 26
2-5.2 混合型吸收劑 27
2-5.3 載體型吸收劑 28
2-5.4 現今吸收劑的發展方向 29
2-6 土壤及其分類 30
2-6.1 紅壤的特性 33
2-6.2 氧化鐵的形式 34
2-7 吸收劑活性衰退 35
2-8 表面物理吸附等溫線 36
2-9 H2S及COS轉化之操作參數 38
2-10 H2S及COS轉化之機制 40
2-11 吸收劑脫硫反應動力之探討 41
2-11.1 衰退模式 42
2-11.2 Arrhenius表示式 44
第三章 研究方法與實驗器材 45
3-1 研究方法 45
3-1.1 實驗規劃 45
3-1.2 實驗步驟與方法 46
3-2 實驗器材 48
3-2.1 實驗系統裝置 48
3-2.2 實驗材料 53
3-3 預備實驗 54
3-3.1 紅壤之前置處理 54
3-3.2 游離鐵的分析 54
3-3.3 檢量線製作 54
3-3.4 空白實驗 55
第四章 結果與討論 57
4-1 不同紅壤去除COS脫硫性能比較 59
4-2 脫硫-再生循環對吸收容量影響之探討 64
4-2.1 老埤紅壤脫硫-再生循環測試 64
4-2.2 脫硫再生之硫回收率分析 68
4-2.3 XRD分析 69
4-3 操作參數對老埤紅壤同時去除H2S及COS之影響 70
4-3.1 不同操作溫度對老埤紅壤同時去除H2S及COS之影響 70
4-3.2 CO濃度、H2濃度、H2S濃度、COS濃度對以老埤紅壤同時去除H2S及COS之影響 71
4-3.3 空間流速對以老埤紅壤同時去除H2S及COS之影響 80
4-3.4 Water-gas shift reaction 81
4-4 程溫氧化及還原分析 83
4-4.1 還原氣氛下之熱重分析 83
4-4.2 氧化氣氛下之熱重分析 84
4-4.3 老埤紅壤再生過程SO2產生量隨溫度之變化 86
4-5 老埤紅壤脫硫前後之分析 88
4-5.1 SEM分析 88
4-5.2 SEM-EDS分析 93
4-5.3 Mapping分析 97
4-5.4 BET表面積與孔洞特性 103
4-6 老埤紅壤吸收H2S及COS之反應機制探討 106
4-6.1 氫氣及一氧化碳對老埤紅壤去除H2S之影響 106
4-6.2 氫氣及一氧化碳對老埤紅壤去除COS之影響 114
4-6.3 二硫化碳(CS2)生成探討 120
4-6.4 其他可能的反應 121
4-7 脫硫反應動力模擬 123
4-7.1 H2S反應動力模擬 123
4-7.2 COS反應動力模擬 128
4-7.3 H2S及COS動力模擬之比較 134
4-7.4 綜合比較 134
第五章 結論與建議 137
5-1 結論 137
5-2 建議 138
參考文獻 139
附錄 146
Abbasian, J., Slimane, R. B., “A regenerable copper-based sorbent for H2S removal coal gases”, Ind. Eng. Chem. Res., 1998, 37, 2775-2782.
Alonso, L., Palacios, J. M., “Performance and Recovering of a Zn-doped Manganese Oxide as a Regenerable Sorbent for Hot Coal Gas Desulfurization”, Energy & Fuel, 2002, 16(6), 1550-1556.
Amararene, F., Bouallou, C., “Kinetics of Carbonyl Sulfide(COS) Absorption with Aqueous Solutions of Diethanolamine and Methyldiethanolamine”, Ind. Eng. Chem. Res., 2004, 43, 6136-6141.
Atimtay, A. T., “Cleaner Energy Production with Integrated Gasification Combined Cycle Systems and Use of Metal Oxide Sorbents for H2S Cleanup from Coal Gas”, Clean Products and Processes, 2001, 197-208.
Ayala, R. E. and Marsh, D. W., “Characterization and Long-Range Reactivity of Zinc Ferrite in High-Temperature Desulfurization Processed“, Ind. Eng. Chem. Res., 1991,30, 55-60.
Bakker, W. J. W., Kapteijn, F., Moulijn, J. A., “A High Capacity Manganese-based Sorbent for Regenerative High Temperature Desulfurization with Direct Sulfur Production Conceptual Process Application to Coal Gas Cleaning”, Chemical Engineering Journal, 2003, 96, 223-235.
Bhatia, S. P., “Organosulfur Emissions from Industrial Sources., In Sulphur in the Environment; Nriagu, J. O., Ed.; Wiley;New York, 1978; Part I, p.51-83.
Bohn, H. L., Fu, Y., Huang, C. G., “Hydrogen sulfide sorption by soils”, Soil Sci. Soc. Am. J., 1989, 53, 1914–1917.
Bremner, J. M., Banwart, W. L., “Sorption of sulfur gases by soils”, Soil Biol. Biochem., 1976, 8, 79–83.
Chen, H., Kong, L., Chen, J., Zhang, R., Wang, A., “Heterogeneous Uptake of Carbonyl Sulfide on Hematite and Hematite-NaCl Mixtures”, Environ. Sci. & Technol., 2007.
Cihacek, L. J., Bremner, J. M., “Capacity of soils for sorption of hydrogen sulfide”, Comm. Soil Sci. Plant Anal., 1990, 21, 351–363.
Clark, P. D., Dowling, N. I., Huang, M., Svrcek, W. Y., Monnery W. D., “Mechanisms of CO and COS Formation in the Claus Furnace”, Ind. Eng. Chem. Res., 2001, 40, 497-508.
Corneille, J. S., He, J. W., Goodman, D. W., “Preparation and characterization of ultra-thin iron oxide films on a Mo(100) surface”, Surface Science 1995, 338, 211-224.
Cuong, P. H., Estournes, C., Heinrich, B., Ledoux, M. J., “High Temperature H2S Removal over High Specific Surface Area β-SiC Supported Iron Oxide Sorbent-part 2 Perparation and Characterization”, J. Chem. Soc. Faraday Trans., 1998, 94, 443-450.
EPA, http://www.epa.gov/ttn/atw/hlthef/asbestos.html
Fontes, M. P. F., Carvalho, I. A. J., “Color Attributes and Mineralogical Characteristics, Evaluated by Radiometry, of Highly Weathered Tropical Soils”, Soil Sci. Soc. Am. J., 2005, 69, 1162-1171.
Focht, G. D., Ranade, P. V., Harrison, D. P., “High Temperature Desulfurization Using Zinc Ferrite: Reduction and Sulfidation Kinetics”, Chem. Eng. Sci., 1988, 43(11), 3005-3013.
Focht, G. D., Ranade, P. V., Harrison, D. P., “High Temperature Desulfurization Using Zinc Ferrite:Solid Structural Property Changes”, Chem. Eng. Sci., 1989, 44(2), 215-224.
Garcý´a, E., Cilleruelo, C., Ibarra, J.,*, Miguel Pineda, and Jose´ M. Palacios,” Kinetic Study of High-Temperature Removal of H2S by Novel Metal Oxide Sorbents”, Ind. Eng. Chem. Res. 1997, 36, 846-853.
Gosselin, R. E.; Smith, R. P.; Hodge, H. C., “Clinical Toxicology of Commercial Products”, 5th ed.; Williams and Wilkins: Baltimore, MD, 1984, 111-201.
Houriet, R.; Louvier, D., “Emission of Toxic Sulfur Gases from Polymers Coming in Contact with Food Products and with Infants”, Analysis 1999, 27, 369-372.
Huang, H., Young, N., Williams, B. P., Taylor, S. H., Hutchings, G., “High temperature COS hydrolysis catalysed by γ-Al2O3”, Catalysis Letters, 2006, 110, 243-246.
Huang, H., Young, N., Williams, B. P., Taylor, S. H., Hutchings, G., “COS hydrolysis using zinc-promoted alumina catalysts”, Catalysis Letters, 2005, 104, 17-21.
HSDB., Hazardous Substances Data Bank.,“MEDLARS Online Information Retrieval System”, National Library of Medicine. 1994.
Jang, H.T., Kim, S.B., Doh, D.S., “The removal of hydrogen sulfide with manganic sorbent in a high-temperature fluidized-bed reactor” Korea J. Chem. Eng., 2003, 20, 116-120.
Jun, H. K., Lee, T. J., Kim, J. C., “Role of Iron Oxide in the Promotion of Zn-Ti-Based Desulfurization Sorbents during Regeneration at Middle Temperatures”, Ind. Eng. Chem. Res. 2002, 41, 4733-4738.
Jun, H. K., Lee, T. J., Ryu, S. O., Kim, J. C., “A Study of Zn—Ti-based H2S Removal Sorbents Promoted with Cobalt Oxides”, Ind. Eng. Chem. Res., 2001, 40(16), 3547-3556.
Karayilan, D., Dogu, G., Yasyerli, S., Dogu, G., “Mn-Cu and Mn-Cu-V Mixed-Oxide Regenerable Sorbents for Hot Gas Desulfurization”, American Chemical Society, Accepted November 12, 2004.
Kao, K.S. Soil science. 1990. p.675. (in Chinese)
Karayilan, D., Dogu, G., Yasyerli, S., Dogu, G., “Mn-Cu and Mn-Cu-V Mixed-Oxide Regenerable Sorbents for Hot Gas Desulfurization”, American Chemical Society, Accepted November 12, 2004.
Ko, T. H., Chu, H., Lin, H. P., Peng, C. Y., “Red soil as a regenerable sorbent for high temperature removal of hydrogen sulfide from coal gas”, J. Hazard. Mater., 2006, B136, 776–783.
Ko, T. H., Chu, H., Tseng, J. J., “Feasibility study on high-temperature sorption of hydrogen sulfide by natural soils”, Chemosphere, 2006, 64, 881-889.
Kobayashi, M., Shirai, H., Nunokawa, M., “Estimation of Multiple-Cycle Desulfurization Performance for Extremely Low-Concentration Sulfur Removal with Sorbent Containing Zinc Ferrite-Silicon Dioxide Composite Powder”, Energy& Fuels 2002, 16, 1378-1386.
Kobayashi, M., “Reduction and Sulfidation Kinetics of Cerium Oxide and Cu-Modified Cerium Oxide”, Ind. Eng. Chem. Res. 2002, 41, 3115-3123.
Kobayashi, M., Shirai, H., Nunokawa, M., “Measurements of Sulfur Capacity Proportional to Zinc Sulfidation on Sorbent Containing Zinc Ferrite-Silica Composite Powder in Pressurized Coal Gas”, Ind. Eng. Chem. Res. 2002, 41, 2903-2909.
Konttinen, J., Mojtahedi, W., “Gasifier Gas Desulfurization at High Temperature and Pressure”, Repr Kemia-Kemi, 1993, 20, 847-851.
Kyotani, T., Kawashima, H., Tomita, A., “High Temperature Desulfurization Reaction with Cu-Containing Sorbents”, Environ. Sci. Technol., 1989, 23(2), 218-223.
Lew, S., Jothimurugesan, K., Flytzani-Stephanopoulo, M., “High Temperature H2S Removal from Fuel Gases by Regenerable Zinc Oxide- Titanate Dioxide Sorbents”, Ind .Eng. Chem. Res., 1992, 31, 1890-1899.
Liu, J., Mu, Y., Geng, C., Yu, Y., “Uptake and conversion of carbonyl sulfide in a lawn soil”, Atmospheric Environment, 2007, 41, 5697-5706.
Li, Z., Flytzani-Stephanopoulos, M., “Cu-Cr-O and Cu-Ce-O Regenerable Oxide Sorbents for Hot Gas Desulfurization”, Ind. Eng. Chem. Res., 1997, 36(1), 187-196.
Mehra, O. P., Jackson M. L. “Iron Oxides Removed from Soils and Clays by a Dithionite Citrate System Buffered with Sodium Bicarbonate”, Proc. 7th Nat. Conf. Clays Clay Miner, 1960, 7, 317-327.
Mojtahedi, W., Abbasian, J., “H2S Removal from Coal Gas at Elevated Temperature and Pressure in Fluidized Bed with Zinc Titanate Sorbents, Part 1:cyclic tests”, Energy Fuels, 1995, 9:782-801.
MSDS, http://www.iosh.gov.tw/frame.htm.
Nagl, G., “Controlling H2S emission”, Chemical Engineering, 1997, 125-131.
Patrick, V., Gavalas, R., Flyzani-Stephanopoulos, M., Jothimurugisan, K., “High Temperature Sulfidation -Regeneration of CuO-Al2O3 Sorbent”, Ind. Eng. Chem. Res., 1989, 28, 931-940.
Pineda, M., Palacios, J.M., Cilleruelo, C., Garcia, E., Ibarra, J.V., “Characterization of Zinc Oxide and Zinc Ferrite Doped with Ti or Cu as Sorbents for Hot Gas Desulfurization”, Appl. Surf. Sci., 1997, 119-10.
Pineda, M., Fierro, J.L.G., Palacios, J.M., “Kinetic Behaviour and Reactivity of Zinc Ferrites for Hot Gas Desulphurization”, J. Mater. Sci., 1995, 30 : 6171-6178.
Poston, J. A., “A Reduction in the Spalling of Zinc Titanate Desulfurization Sorbents through Addition of Lanthanum Oxide”, Ind. Eng. Chem. Res., 1996, 35(3), 875-882.
Ranade, P. V.; Harrison, D. P., “The variable property grain model applied to the ZnO-H2S reaction”, Chem. Eng. Sci., 1981, 36, 1079-1090.
Sasaoka, E., Ichio, T., Kasaoka, S., “High-temperature hydrogen sulfide removal from coal-derived gas by iron ore” Energy & Fuels, 1992, 6, 603-608.
Sasaoka, E., Sakamoto, M., Ichio, T., Kasaoka, S., Sakata, Y., “Reactivity and Durability of Iron Oxide High Temperature Desulfurization Sorbents”, Energy & Fuels, 1993, 7, 632-638.
Sasaoka, E., Iwamoto, Y., Hirano, S., “Soot Formation over Zinc Ferrite High-Temperature Desulfurization Sorbent”, Energy & Fuels; 1995, 9(2), 344-353.
Sasaoka, E., Taniguchi, K., Uddin, M. A., Hirano, S., Kasaoka, S., Sakata, Y., “Characterization of reaction between ZnO and COS”, Ind. Eng. Chem. Res., 1996, 35, 2389-2394.
Schwertman, U. and Taylor, R. M. ”Iron Oxides,” In:Minerals in Soil Environments, Dixon, J. B., Weed S. B., (ed.), 2nd ed., Soil Sci. Soc. Am. J., Medison, Wisconsin, USA,1989, p.379-428.
Schwertmann, U. and Cornell, R. M. Iron oxides in the laboratory. Wiley-VCH publication. 2000.
Schaack, J. P., Chan, F., “H2S Scavenginh-1”, Oil & Gas Journal, 1989, 125-131.
Singer, M. J., Munns, D. N. Soils: an introduction fifth edition. Prenhall publication, 2002. Chapter 1, p.9.
Slimane, R. B., Abbasian, J., “Utilization of metal oxide-containing waste materials for hot coal gas desulfurization”, Adv. Environ. Res., 2001, 70, 97-113.
Stoner, E. R., Baumgardner, M. F., Biehl, L. L., and Robinson, B. F., “Atlas of soil reflectance properties”, Res. Bull. 962. Agric. Exp. Stn., Purdue Univ., West Lafayette, IN., 1980.
Svoronos, P. D. N. and Bruno, T. J., “Carbonyl Sulfide: A Review of Its Chemistry and Properties”, Ind. Eng. Chem. Res. 2002, 41, 5321-5336.
Swisher, J. H., Yang, J., Gupta, R. P., “Attirtion-resistant Zinc Titanate Sorbent for Sulfur”, Ind. Eng. Chem. Res., 1995, 34:4463-4471.
Tamhankar, S. S., Hasatani, M., Wen, C. Y., “Kinetic studies on the reactions involved in the hot gas desulfurization”, Chem. Eng. Sci., 1981, 36, 1181-1191.
Tseng, T. K., Chang, H. C., Chu, H., Chen H. T., “Hydrogen sulfide removal from coal gas by the metal-ferrite sorbents made from the heavy metal wastewater sludge”, J. Hazard. Mater., 2008.
Van der Ham, A. G. J., Vanderbosch, R. H., Prins, W., “Survey of Desulfurization Processes for Coal Gas” In:Atimtay, A. A., Harrison, D. P.(eds), “Desulfurization of Hot Coal Gas”, NATO ASI Ser 1996, 42, 117-136.
Wakker, J. P., Gerritsen, A. W., Moulijn, J. A., “High temperature H2S and COS removal with MnO and FeO on γ-Al2O3 acceptors”, Ind. Eng. Chem. Res., 1993, 32,139-149.
Westmoreland, P. R., Harrison, D. P., “Evaluation of Candidate Solids for High-Temperature Desulfurization of Low-Btu Gasses”, Envi. Sci. & Tech., 1976, 10(7), 659-661.
Yumura, M., Furimsky, E., “Comparison of CaO, ZnO and Fe2O3 as H2S adsorbents at high temperatures” Ind. Eng. Chem. Process. Des. Dev., 1985, 24, 1165-1168.
Zaho, J., Huang,J, Zhang, J.,Wang, Y., “Influence of Fly Ash on High Temperature Desulfurization Using Iron Oxide Sorbent”, Energy & Fuels, 2002, 16(6), 1585-1590.
王奕凱、邱宏明、李秉傑合譯,「非均勻系催化原理與應用」,國立編譯館,渤海堂文化公司,1993。
王志成、李福文,「硫化氫新處理技術:SULFA CHECK與現行方法之比較」,工業污染防治,第30期,1989,197-202。
中國鋼鐵股份有限公司,「能源密集產業採用淨煤發電技術應用規劃計劃」,經濟部能源委員會,2000。
朱信、曾明宗,「煤炭企劃複循環發電機組可行性之研究」,工業技術研究院能源與資源研究所、台灣電力公司電力綜合研究所研究計畫期末報告,1991,p.26-29。
何春蓀,「台灣地質概論,台灣地質圖說明書」,經濟部中央地質調查所,2003,p.104-105。
邱穎源,「以Pt/Al2O3觸媒焚化處理醇類與硫醇類之研究」,國立成功大學環境工程學系碩士論文,1994。
林曉菁,「以鹼性添著碳處理硫化氫與甲硫醇效率影響因子之研究」,國立成功大學環境工程學系碩士論文,1996。
林曉萍,「以重金屬廢水污泥經高溫合成之鐵氧磁體高溫去除H2S之吸收特性」,國立成功大學環境工程學系研究所,碩士論文,2006。
柯子星,「以紅壤在高溫下去除煤炭氣化氣中硫化氫之研究」,國立成功大學環境工程學系博士論文,2005。
柯清水,「養殖池中硫化氫之成因及對策」,養魚世界,1999, p.36-39。
徐恆文,「煤炭氣化技術發展趨勢」,燃煤新技術研討會,2001。
陳尊賢、許正一,「台灣土壤的種類」,台灣的土壤,2002,p.60-72。
望熙榮(譯),Cooper, C. D., Alley, F. C.,「空氣污染防治」,中央圖書,1998。
張翰青,「以重金屬廢水污泥產生之鐵氧磁體高溫去除H2S之吸收特性」,國立成功大學環境工程學系研究所,碩士論文,2005。
賀長富,「台北市北投區溫泉業維修作業人員硫化氫暴露之研究」,中國文化大學勞工研究所,碩士論文,2001。
黃瀞瑩,「以Fe2O3/SiO2吸收劑高溫去除硫化氫及硫化羰之研究」,國立成功大學環境工程學系碩士論文,2007。
劉陽秋,「燒煤發電之先進技術」,台電工程月刊,第571期1-8,1995。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top