跳到主要內容

臺灣博碩士論文加值系統

(34.226.244.254) 您好!臺灣時間:2021/08/03 02:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:徐敏容
研究生(外文):Min-Jung Hsu
論文名稱:以Sr、Cr改質TiO2光觸媒處理1,2-二氯乙烷之研究
論文名稱(外文):Photocatalytic Degradation of 1,2-dichloroethane with Sr- or Cr-doped TiO2 Photocatalysts
指導教授:朱信朱信引用關係
指導教授(外文):Hsin Chu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:環境工程學系碩博士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:141
中文關鍵詞:二氧化鈦改質光觸媒1 2-二氯乙烷
外文關鍵詞:Strontium (Sr)Chromium (Cr)modified photocatlytic degradation1 2-DichloroethaneTitanium dioxide (TiO2)
相關次數:
  • 被引用被引用:7
  • 點閱點閱:398
  • 評分評分:
  • 下載下載:75
  • 收藏至我的研究室書目清單書目收藏:1
1,2-二氯乙烷(1,2-dichloroethane)為工業上常用的一種有機溶劑,使用過程中如釋放到空氣中,將對環境及人體造成危害。目前最常用的處理方法是從製程上直接去除,而光催化為處理揮發性有機物的技術中較新穎的處理技術,具有非選擇性及室溫下可分解有機物等特性,為具發展潛力的最終處理程序。
本研究主要目的為利用自製TiO2 光觸媒處理1,2-二氯乙烷,並添加Sr、Cr 對自製TiO2 光觸媒進行改質,探討改質TiO2 光觸媒對1,2-二氯乙烷去除率之影響,並期望藉由改質來提高TiO2 在可見光的利用率,而達到可利用太陽能以降低成本的目標。同時探討反應系統中,滯留時間、氧氣含量及反應物初始濃度對1,2-二氯乙烷去除率之影響,並藉由各種輔助實驗,如XRD、SEM 等多項精密儀器來觀察研究光觸媒之各項物化性質。本實驗採用連續式環狀薄膜反應器,而TiO2 光觸媒及改質TiO2 光觸媒是利用溶膠凝膠法製備而成。
光觸媒鑑定結果,由XRD 分析得知,鍛燒溫度為500℃時自製TiO2光觸媒晶相大部份為anatase,另有一些rutile 晶相產生。由UV-Visible光譜分析可知, Sr、Cr 的添加都會使TiO2 的臨界波長往長波長位移,且band gap 變小。
在紫外光照射下之光催化實驗中,改質TiO2 光觸媒處理1,2-二氯乙烷之轉化率分析可發現,停留時間1 min 時,Sr/Ti=0.01%之改質TiO2 光觸媒表現最佳,其轉化率為85.6%;而自製TiO2 光觸媒,轉化率為40.5%。由操作參數實驗發現,氧氣雖為光催化反應所需之反應物種,但僅需要很少的氧氣量,光反應即可進行。Sr/Ti=0.01%光觸媒的動力分析實驗可得,反應之活化能Ea=47.6 kJ/mol,碰撞因子A=1.65 mol/sec/cm3。
在可見光照射下之批次實驗,以Cr/Ti=0.01%之改質TiO2 光觸媒表現最佳。藍光照射下,經過45 分鐘可達到100%去除效率;日光照射下,經過65 分鐘可達到100%去除效率。
1,2-Dichloroethane is a widely used organic solvent in the industries.Release of 1,2-dichloroethane to the atmosphere will cause damage tothe environment and human health. Direct removal of it from the process isthe major method and photocatalytic degradation is a noveltechnique. It has drawn considerable attention as a non-selective and room-temperature process for the degradation of VOC pollutants.
The purpose of this study is to photodegrade the 1,2-dichloroethane over the Sr- or Cr-doped TiO2 modified photocatalysts. We expected that the incorporation of metal ions into titania crystal lattice could extend the
absorption by the photocatalysts into visible region and reach the goal of adequately using solar energy in order to lower the cost.The effects of operating factors, such as space velocity, oxygen concentration and VOC concentration, on the performance of the photocatalysts were investigated. Some instruments, such as XRD and SEM, were performed to analyze the physical and chemical properties of the photocatalysts. A tube deposited TiO2 thin film was used in this experiment. All photocatalysts
were made by the sol-gel method.
In the XRD pattern, the crystalline phases of the TiO2 photocatalyst prepared by calcining at 500°C are primarily composed of anatase and less amount of rutile. The UV-visible spectra analysis indicates that the Sr- or Cr-doped TiO2 photocatalysts result in a red shift in the
absorption wavelength toward visible light regions and a
bandgap-narrowing phenomenon.
Under UV light illumination, the Sr-doped TiO2 photocatalyst with Sr/Ti=0.01% has the best 1,2-dichloroethane photodegration performance when retention time is controlled at 1 min. The corresponding removal efficiency is 85.6%. In comparison, the performance of TiO2 in the same condition is 40.5%. From the experiment of operating performance, it is found that oxygen is a necessary reaction species in the photocatalytic
degradation but the reaction will be carried on even little oxygen is present. The experiment of kinetic behavior of 1,2-dichloroethane over the Sr/Ti=0.01% photocatalyst shows that the activation energy Ea=47.6 kJ/mol and the frequency factor A=1.65 mol/sec/cm3.
Under the visible light illumination, the best
1,2-dichloroethane photodegration performance occurs in the Cr-doped TiO2 photocatalysts with Cr/Ti=0.01%. The removal efficiency reached 100% under blue light illumination after 45 minutes while it did under sunlight
illumination after 65 minutes.
摘要...................................... I
Abstract ........................... III
目錄......................................A
表目錄..................................... E
圖目錄.............................................F
第一章 前言.....................................1
1-1 研究動機........................................ 1
1-2 研究架構..................................... 4
第二章 文獻回顧................................5
2-1 VOCs 的來源及危害........................... 6
2-1.1 VOCs 的定義及來源.......................... 6
2-1.2 Cl-VOCs 的使用狀況.......................... 8
2-2 1,2-二氯乙烷的特性與處理方法.................... 10
2-2.1 二氯乙烷之危害【工研院工安衛中心,2000】....... 11
2-2.2 二氯乙烷之處理方法........................ 13
2-3 光催化原理.................................. 14
2-4 二氧化鈦的基本特性............................ 20
2-5 二氧化鈦的改質............................... 22
2-5.1 添加金屬原子.................................... 22
2-5.2 添加金屬離子................................... 23
2-5.3 添加非金屬元素.............................. 25
2-5.4 加入其它種半導體.............................. 27
2-6 觸媒的製備...................................... 28
2-7 二氧化鈦光觸媒塗佈方法....................... 32
2-7.1 浸漬塗佈方法............................ 32
2-7.2 旋轉塗佈法....................................... 33
2-8 光觸媒分解有機物之反應動力探討................ 34
2-8.1 柱流式反應器基礎理論.......................... 34
2-8.2 微分型反應器.................................... 36
2-8.3 觸媒異相反應模式.............................. 37
第三章 研究方法與實驗設備.............................41
3-1 研究方法........................... 41
3-1.1 實驗規劃................................... 41
3-1.2 實驗步驟與方法.............................. 42
3-2 預備實驗........................................ 43
3-2.1 光觸媒之製備............................ 43
3-2.2 光觸媒膜之製備............................ 45
3-2.3 檢量線製作................................ 48
3-2.4 光催化之背景實驗......................... 49
3-3 實驗設備.......................................... 49
3-3.1 實驗系統裝置.................................. 49
3-3.2 試藥與氣體................................... 57
第四章 結果與討論.....................................58
4-1 自製TiO2 之特性分析........................ 58
4-1.1 熱重分析(Thermal Gravity Analyst,TGA)....... 58
4-1.2 FTIR 及TG-IR 分析............................. 60
4-1.3 X-射線繞射分析(X-ray Diffraction,XRD) ......... 63
4-1.4 以500℃鍛燒3 小時後之TiO2 光觸媒處理1,2-二氯乙
烷的產物分析...................................... 66
4-1.5 以500℃鍛燒3 小時之TiO2 光觸媒TEM 分析......... 68
4-1.6 以500℃鍛燒3 小時之TiO2 光觸媒在反應前之SEM
分析及反應後SEM、Mapping、EDS 分析................ 69
4-2 自製Sr/TiO2 光觸媒之特性分析...................... 73
4-2.1 熱重分析................................. 73
4-2.2 X-射線繞射分析(X-ray Diffraction,XRD) ........ 75
4-2.3 UV-Visible 光譜分析......................... 80
4-2.4 BET 比表面積及孔洞分佈分析................ 83
4-2.5 以500℃鍛燒3 小時製備之Sr/TiO2 光觸媒處理1,2-
二氯乙烷的產物分析............................ 85
4-2.6 以500℃鍛燒3 小時製備之Sr/TiO2 光觸媒處理1,2-
二氯乙烷後之SEM、Mapping、EDS 分析.............. 87
4-2.7 Sr/TiO2 光觸媒之XPS 分析.................... 91
4-3 自製Cr/TiO2 光觸媒之特性分析................. 94
4-3.1 熱重分析..................................... 94
4-3.2 X-射線繞射分析(X-ray Diffraction,XRD) ........ 96
4-3.3 UV-Visible 光譜分析...................... 99
4-3.4 BET 比表面積及孔洞分佈分析.................101
4-3.5 以500℃鍛燒3 小時製備之Cr/TiO2 光觸媒處理1,2-
二氯乙烷的產物分析.........................103
4-3.6 以500℃鍛燒3 小時製備之Cr/TiO2 光觸媒處理1,2-
二氯乙烷後之SEM、Mapping、EDS 分析.................105
4-3.7 Cr/TiO2 光觸媒之XPS 分析....................108
4-4 光觸媒在紫外光照射下處理1,2-二氯乙烷之光催化實驗.. 111
4-4.1 以500℃鍛燒3 小時製備不同Sr/Ti 比例光觸媒處理
1,2-二氯乙烷的轉化率分析........................... 111
4-4.2 以500℃鍛燒3 小時製備不同Cr/Ti 比例光觸媒處理
1,2-二氯乙烷的轉化率分析......................... 113
4-4.3 不同進流濃度對轉化率的影響................. 115
4-4.4 不同停留時間對轉化率的影響................. 116
4-4.5 不同氧氣濃度對轉化率的影響.................... 118
4-5 自製Sr/TiO2 光觸媒之動力分析....................120
4-6 光觸媒在可見光照射下處理1,2-二氯乙烷之光催化實驗..............127
4-7 綜合比較..................................131
第五章 結論與建議....................132
5-1 結論.......................................132
5-2 建議...........................................134
參考文獻..........................................135
Alberici, R. M., Jardim, W. F., “Photocatalytic destruction of VOCs in the gas-phase using titanium dioxide”, Applied Catalysis B: Environmental, 14, 55-68, 1997.

Al-Salim, N. I., Bagshaw, S. A., Bittar, A., Kemmitt, T., McQuillan, A. J., Mills, A. M., Ryan, M. J., “Characterisation and activity of sol-gel-prepared TiO2 photocatalysts modified with Ca, Sr or Ba ion additives”, Journal of Material Chemistry, 10, 2358-2363, 2000.

Amores, J. M. G., Escribano, V. S., Daturi, M., Busca, G., “Preparation, characterization and surface structure of coprecipitated high-area SrxTiO2+x (0 < x < 1) powders”, Journal of Materials Chemistry, 6, 879-886, 1996.

Anpo, M., Kishiguchi, S., Takeuchi, M., Yamashita, H., Ikeue, K., Morin, B., Davidson, A., Che, M., “The design and development of second-generation titanium oxide photocatalysis able to operate under visible light irradiation by appling a metal ion-implantation method”, Research on Chemical Intermediates, 27, 459-467, 2001.

Anpo, M., Shima, T., Kodama, S., Kubokawa, Y., “Photocatalytic hydrogenation of CH3CCH with H2O on small-particle TiO2: size quantization effects and reaction intermediates”, Journal of Physical Chemistry, 91, 4305-4310, 1987.

Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., Taga, Y., “Visible-light photocatalysis in nitrogen-doped titanium oxides”, Science, 293, 269-271, 2001.

Bandara, J., Mielczarski, J. A., Lopez, A., Kiwi, J., “Sensitized degradation of chlorophenols on iron oxides induced by visible light comparison with titanium oxide”, Applied Catalysis B: Environmental, 34, 321-333, 2001.

Belver, C., López-Muñoz, M. J., Coronado, J. M., Soria, J., “Palladium enhanced resistance to deactivation of titanium dioxide during the photocatalytic oxidation of toluene vapors”, Applied Catalysis B: Environmental, 46, 497-509, 2003.

Benesi, H. A., Bonnar, R. U., Lee, S. C., “Determination of pore colume of solid catalyst”, Analytical Chemistry, 27, 1963-2965, 1955.

Bessekhouad, Y., Robert, D., Weber, J. V., “Bi2S3/TiO2 and CdS/TiO2 heterojunctions as an available configuration for photocatalytic degradation of organic pollutant”, Journal of Photochemistry and Photobiology A - Chemistry, 163, 569-580, 2004.

Brillas, E., Mur, E., Sauleda, R., Sanchez, L., Peral, J., Domenech, X., Casado, J., “Aniline mineralization by AOP’s: anodic oxidation, photocatalysis, electro-Fenton and photoelectro-Fenton processes”, Applied Catalysis B: Environmental, 16, 3142, 1998.

Cermenati, L., Dondi, D., Fagnoni, M., Albini, A., “Titanium dioxide photocatalysis of adamantine”, Tetrahedron, 59, 6409-6414, 2003.

Chen, D., Ray, A. K., “Photo-degradation kinetics of 4-nitro-phenol in TiO2 suspension”, Water Research, 32, 3223–3234, 1998.

Choi, W., Termin, A., Hoffmann, M. R., “The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics”, Journal of Physical Chemistry, 98, 13669-13679, 1994.

Dvoranova, D., Brezova, V., Mazura, M., Malati, M. A., “Investigations of metal-doped titanium dioxide photocatalysts”, Applied Catalysis B: Environmental, 37, 91-105, 2002.

Fan, X., Chen, X., Zhu, S., Li, Z., Yu, T., Ye, J., Zou, Z., “The structural, physical and photocatalytic properties of the mesoporous Cr-doped TiO2”, Journal of Molecular Catalysis A: Chemical, 284, 155-160, 2008.

Fogler, H. S., “Elements of chemical reaction engineering”, 3rd ed., Prentice Hall, 1999.

Fox, M. A., Dulay, M. T., “Heterogeneous photocatalysis”, Chemical Reviews, 93, 341-357, 1993.
Gracien, E. B., Shen, J., Sun, X. R., Liu, D., Li, M., Yao, S. D., Sun, J., “Photocatalytic activity of manganese, chromium and cobalt-doped anatase titanium dioxide nanoporous electrodes produced by re-anodization method”, Thin Solid Films, 515, 5287-5297, 2007.

Harizanov, O., Ivanova, T., Harizanova, A., “Study of sol-gel TiO2 and TiO2-MnO obtained from a peptized solution”, Material Letters, 49, 165-171, 2001.

He, C., Yu, Y., Zhou, C., Hu, X., “Structure and photocatalyst activityies of Ag/TiO2 thin films”, Journal of Inorganic Materials, 17, 1025-1033, 2002.

He, D., Lin, F., “Preparation and photocatalytic activity of anatase TiO2 nanocrystallites with high thermal stability”, Materials Letters, 61, 3385-3387, 2007.

Hoffmann, M. R., Martin, S. T., Choi, W., Bahnemann, D. W., “Environmental applications of semiconductor photocatalysis”, Chemical Reviews, 95, 69-96, 1995.

Ho, W., Yu, J. C., Lee, S., “Low-temperature hydrothermal synthesis of S-doped TiO2 with visible light photocatalytic activity”, Journal of Solid State Chemistry, 179, 1171-1176, 2006.

Jiang, F., Zheng, Z., Xu, Z., Zheng, S., Guo, Z., Chen, L., “Aqueous Cr(VI) photo-reduction catalyzed by TiO2 and sulfated TiO2”, Journal of Hazardous Materials B, 134, 94-103, 2006.

Justicia, I., Ordejon, P., Canto, G., Mozos, J. L, Fraxedas, J., Battiston, G. A., Gerbasi, R., Figueras, A., “Designed self-doped titanium oxide thin films for efficient visible-light photocatalysis”, Advanced Material, 14, 1399-1402, 2002.

Kanai, N., Nuida, T., Ueta, K., Hashimoto, K., Watanabe, T., Ohsaki, H., “Photocatalytic efficiency of TiO2/SnO2 thin film stacks prepared by dc magnetron sputtering”, Vacuum, 74, 723-727, 2004.

Keller, V., Bernhardt, P., Garin, F., “Photocatalytic oxidation of butyl acetate in vapor phase on TiO2, Pt/TiO2 and WO3/TiO2 catalysts”, Journal of Catalysis, 215, 129-138, 2003.

Kemp, T. J., McIntyre, R. A., “Transition metal-doped titanium(IV) dioxide: characterisation and influence on photodegradation of poly(vinyl chloride)”, Polymer Degradation and Stability, 91, 165-194, 2006.

Larbot, A., Nabias, G., Cot, L., “Preparation and characterization of colloidal solution derived crystallized titania powder”, Journal of the European ceramic society, 18, 2175-2181, 1998.

Lee, G. W., Choi, S. M., “Thermal stability of heat-treated flame-synthesized anatase TiO2 nanoparticles”, Journal of Materials Science, 43, 715-720, 2008.

Lee, S. H., Lee, K. S., Kim, J. H., “Titanium oxide thin film deposited on metallic Cr substrate by RF-magnetron sputtering”, Materials Letters, 61, 3440-3442, 2007.

Linsebigler, A. L., Lu, G., Yates, J. T., “Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results”, Chemical Reviews, 95, 735-758, 1995.

Machkova, M., Brashkova, N., Ivanov, P., Carda, J. B., Kozhukharov, V., “Surface behavior of Sr-doped lanthanide perovskites”, Applied Surface Science, 119, 127-136, 1997.
Muggli, D. S., McCue, J. T., Falconer, J. L., “Mechanism of the photocatalytic oxidation of ethanol on TiO2”, Journal of Catalysis, 173, 470-483, 1998.

Obee, T. N., Hay, S. O., “Effects of moisture and temperature on the photooxidation of ethylene on titania”, Environmental Science & Technology, 31, 2034-2038, 1997.

Okada, M., Yamada, Y., Jin, P., Tazawa, M., Yoshimura, K., “Fabrication of multifunctional coating which combines low-e property and visible-light-responsive photocatalytic activity”, Thin Solid Films, 442, 217-221, 2003.

Ollis, D. F., Hsiao, C. Y., Budiman, L., Lee, C. L., “Heterogeneous photoassisted catalysis: conversions of perchloro-ethylene, dichlorobenzene, chloroacetic acid and chlorobenzene”, Journal of Catalysis, 88, 89-96, 1984.

Park, M., Komarneni, S., Roy, R., “Microwave-hydrothermal decomposition of chlorinated organic compounds”, Materials Letters, 43, 259-263, 2000.

Patrick, V., Gavalas, R., Flyzani-Stephanopoulos, M., Jothimurugisan, K., “High temperature sulfidation-regeneration of CuO-Al2O3 sorbent”, Industrial & Engineering Chemistry Research, 28, 931-940, 1989.

Pawlak, D. A., Ito, M., Oku, M., Shimamura, K., Fukuda, T., “Interpretation of XPS O(1s) in mixed oxides proved on mixed perovskite crystals”, Journal Physical Chemistry B, 106, 504-507, 2002.

Prabakar, K., Takahashi, T., Nezuka, T., Takahashi, K., Nakashima, T., Kubota, Y., Fujishima, A., “Visible light-active nitrogen-doped TiO2 thin films prepared by DC magnetron sputtering used as a photocatalyst”, Applied Catalysis B: Environmental, 33, 277-281, 2008.

Reddy, K. M., Reddy, C. V. G., Manorama, S. V., “Preparation, characterization, and spectral studies on nanocrystalline anatase TiO2”, Journal of Solid State Chemistry, 158, 180-186, 2001.

Ruiz, A. M., Cornet, A., Shimanoe, K., Morante, J. R., Yamazoe, N., “Effects of various metal additives on the gas sensing performances of TiO2 nanocrystals obtained from hydrothermal treatments”, Sensors and Actuators B-Chemical, 108, 3190-3196, 2004.

Serpone, N., Lawless, D., Disdier, J., Herrmann, J. M., “Photoconductivity, and photocatalytic studies of TiO2 colloids: naked and with the lattice doped with Cr3+, Fe3+, and V5+ cations”, Langmuir, 10, 643, 1994.

Shah, S. I., Li, W., Huang, C. -P., Jung, O., Ni, C., “Study of Nd3+, Pd2+, Pt4+, and Fe3+ dopant effect on photoreactivity of TiO2 nanoparticles”, Proceedings of The National Academy of Sciences of The United States of America, 99, 6482-6486, 2002.

Sivakumar, S. P., Krishna, P., Mukundan, P., Warrier, G. K., “Sol-gel synthesis of nanosized anatase from titanyl sulfate”, Materials Letters, 57, 330-335, 2002.

Sonawane, R. S., Hegde, S. G., Dongare, M. K., “Preparation of titanium(IV) oxide thin film photocatalyst by sol-gel dip coating”, Materials Chemistry and Physics, 77, 744-750, 2002.

Takeuchi, M., Yamashita, H., Matsuoka, M., Anpo, M., Hirao, T., Itoh, N., Iwamoto, N., “Photocatalytic decomposition of NO under visible light irradiation on the Cr-ion-implanted TiO2 thin film photocatalyst”, Catalysis Letters, 67, 135-137, 2000.

Umebayashi, T., Yamaki, T., Itoh, H., Asai, K., “Band gap narrowing of titanium dioxide by sulfur doping”, Applied Physics Letters, 81, 454-456, 2002.

Wang, K. -H., Hsieh, Y. -H., Chou, M. -Y., Chang, C. -Y., “Photocatalytic degradation of 2-chloro and 2-nitro-phenol by titanium dioxide suspensions in aqueous solution,” Applied Catalysis B: Environmental, 21, 1-8, 1999.

Wang, W. H., Wu, Y., Xu, B. Q., “Preparation and characterization of nanosized anatase TiO2 cuboids for photocatalysis”, Applied Catalysis B: Environmental, 59, 139-146, 2005.

Wilke, K., Breuer, H.D., “The influence of transition metal doping on the physical and photocatalytic properties of titania”, Journal of Photochemistry and Photobiology A: Chemistry, 121, 49-53, 1999.

Yang, S., Huang, Y., Huang, C., Zhao, X., “Enhanced energy conversion efficiency of the Sr2+-modified nanoporous TiO2 electrode sensitized with a ruthenium complex”, Chemistry of Materials, 14, 1500-1504, 2002.

Yin, S., Yamaki, H., Komatsu, M., Zhang, Q., Wang, J., Tang, Q., Saito, F., Sato, T., “Preparation of nitrogen-doped titania with high visible light induced photocatalytic activity by mechanochemical reaction of titania and hexamethylenetetramine”, Journal of Materials Chemistry, 13, 2996-3001, 2003.

Yoneyama, H., Haga, S., “Photocatalytic activities of microcrystalline titania incorporated in sheet silicates of clay”, Journal of Physical Chemistry, 93, 4833-4837, 1981.

Youjun, L., Keyu, S., Yuying, Z., Yuying, H., Xianzhi, G., Zongjie, D., Hongjian, C., Cheng, Z., Baolong, Z., “The characterization of Sr-doped nanocrystal grain microspheres and photodegradation of KN-R dye”, Catalysis Communications, 9, 557-562, 2008.

Yuan, Z., Zhang, J., Li, B., Li, J., “Effect of metal ion dopants on photochemical properties of anatase TiO2 films synthesized by a modified sol-gel method”, Thin Solid Films, 515, 7091-7095, 2007.

Yu, J. C., Lin, J., Fwok, W. M., “Enhanced photocatalytic activity of Ti1-xVxO2 solid solution on the degradation of acetone”, Journal of Photochemistry and Photobiology A: Chemistry, 111, 199-230, 1997.

Zhang, L., “Hydrothermal doping method for preparation of Cr3+-TiO2 photocatalysts with concentration gradient distribution of Cr3+”, Applied Catalysis B: Environmental, 62, 329-335, 2006.

Zhang, W., Li, Y., Zhua, S., Wang, F., “Copper doping in titanium oxide catalyst film prepared by dc reactive magnetron sputtering”, Catalysis Today, 93-95, 589-594, 2004.

Zhu, J., Deng, Z., Chen, F., Zhang, J., Chen, H., Anpo, M., Huang, J., Zielinska, B., Morawski, A. W., “TiO2 photocatalysts promoted by alkali metals”, Applied Catalysis B: Environmental, 55, 221-226, 2005.

陳慧英,黃定加,朱秦億,「溶膠凝膠法在薄膜製備上的應用」,化工技術,第7卷,第11期,152-167,1999。

黃振家,「揮發性有機廢氣處理技術:活性碳吸附」,化工技術,第44卷,第3期,49-59,1997。

董俊興,「經摻雜之二氧化鈦觸媒膜光分解性質之研究」,國立中央大學化學工程學系碩士論文,2001。

勞工安全衛生研究所,http://www.iosh.gov.tw/intro/show/show7.htm

蔡文田,張慶源,「揮發性有機物(VOCs)催化燃燒處理」,環境工程會刊,第4期,41-58,1992。

蔡文田,「含氯溶劑可行減廢技術介紹」,工業污染防治,第3期,171-182,1993。

蔡金津,「奈米顆粒及薄膜之溶膠-凝膠技術」,化工資訊,16-21,2001。

劉國棟,「VOC管制趨勢展望」,工業污染防制,第48期,15-31,1992。

劉暢,暴寧鐘,楊祝紅,陸小華,催化學報,第22期,215-218,2001。

盧滄海,賴龍山,「廢溶劑回收可行性探討」,工業污染防治,第29期,102-117,1989。

環境保護署,「有害空氣污染物排放管制規範研訂計畫」,EPA-82-F103-09-13,1994。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top