跳到主要內容

臺灣博碩士論文加值系統

(3.238.135.174) 您好!臺灣時間:2021/08/05 07:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:盧怡靜
研究生(外文):I-Jing Lu
論文名稱:台灣公路運輸部門能源耗用與CO2排放趨勢變動因素探討
論文名稱(外文):Decomposition and trend analyses of energy consumption and CO2 emission from the road traffic system in Taiwan
指導教授:林素貞林素貞引用關係
指導教授(外文):Sue J. Lin
學位類別:博士
校院名稱:國立成功大學
系所名稱:環境工程學系碩博士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:136
中文關鍵詞:系統動態灰預測灰關聯分析因素分解機車小客車能源消費與CO2排放公路運輸部門
外文關鍵詞:grey forecasting modelpassenger carsroad traffic system and system dynamics modelgrey relation analysisCO2 emissiondecomposition analysismotorcyclesenergy consumption
相關次數:
  • 被引用被引用:2
  • 點閱點閱:461
  • 評分評分:
  • 下載下載:136
  • 收藏至我的研究室書目清單書目收藏:0
本研究目的,首先針對國內公路運輸部門機動車輛數,能源消費及CO2排放變動進行趨勢分析。基於國內小客車與機車所佔之車輛結構比例歷年來平均約為整體公路運輸部門之94%以上,且其能源耗用比例亦分別為50.3%與9.7%。因此,本研究分別以因素分解及灰關聯分析法比較並探討影響國內公路運輸部門,小客車與機車能源耗用之主要關鍵因子。此外,由於系統動態學具有呈現系統各組成因子彼此互相連結與變動之複雜且動態運作之特性,故進一步小客車為例,瞭解其在人口成長,經濟活動,油價,臺北捷運系統與液化石油車等多項組成因子變動下,未來小客車車輛數,能源耗用與CO2排放之成長趨勢。相較於傳統迴歸統計,灰色系統具有所需數據少且適合處理不確定或訊息不完備之特性,因此本研究以灰色預測GM(1,1)模型建立國內公路運輸部門機動車輛數,能源消費及CO2排放之預測模型。最後藉由德國,日本與南韓公路運輸部門CO2排放因素分解及相關運輸政策之分析比較,瞭解國內公路運輸部門未來在後京都時代邁向永續發展與CO2減量所應著重之策略。
研究成果摘要如下:
1.經濟成長所衍生之車輛能源需求及每輛車之車輛行駛里程為促使公路運輸部門,小客車與機車能源需求呈現增量之最主要因素。此外,歷年來車行里程的成長變動均高於車輛能耗,故每單位車行里程之能源耗用為促使其能源需求減量最關鍵之因素。儘管國內生產毛額與經濟活動人口之成長幅度已漸趨於穩定,但綜觀而言,經濟活動仍高於經濟活動人口的成長,故經濟活動人口密集度為另一個促使公路運輸部門能源需求減量之重要因素。由於小客車之車輛結構比例由1990年之24.6%成長至2005年之32.7%,而機車則由68.4%下降至 61.3%;故車輛結構配比為促使小客車能源耗用呈現增量之次要因素,反觀機車的能源需求則為減量因素。
2.灰關聯分析結果顯示,經濟成長與機動車輛數之增加對於車輛能源耗用的確有顯著之增量效應。此外,儘管車行里程與總能源消費的灰關聯度僅為0.66,但其灰關聯係數於各年度均呈現正值,顯示車行里程的成長高於能源消費的增加率,亦即每單位能耗所行駛之車行里程有增加之趨勢。相較於其他因素,油價與經濟活動人口的成長對於車輛能耗之變動則較不顯著。
3.經由系統動態之模擬結果顯示,小客車之車輛數於2025年時將增加至8.0百萬 輛,相較於1990年增加約5.7百萬輛。隨著機動車輛的成長,小客車的能源需求與CO2排放量亦隨之成長。據估計1990至2025年間,其能源耗用與CO2排放增量分別為14.2百萬公秉與30.8百萬公噸。此外,在四種情境條件分析下亦指出經濟成長仍是左右小客車車輛數,能源需求及CO2排放最主要的因子,而藉由政策手段直接限制車輛數的成長將可有效降低車輛的能源需求及CO2排放。在燃油價格持續攀升的假設條件下,較3%的LPG車輛結構配比在能源耗用與CO2排放減量上有較佳的表現。
4.由GM(1,1)模型所建立之預測模式顯示公路運輸部門的車輛數,能源消費與CO2排放分別以3.64%,3.25%及3.23%的年平均成長率增加。由於GM(1,1)模式的發展主要是受模型中的發展係數所控制,固定的發展係數會讓預測值呈單一指數規律成長。考量到運輸需求與經濟活動具有相當密切之關聯性,因此,本研究進一步以高中低三種經濟成長率做為發展係數修正的基礎並預測2007-2025年間公路運輸部門於車輛數,能源需求與二氧化碳排放之變動。研究結果顯示,在總體經濟成長率分別為高低兩種情境預測且不考量任何減量措施下,預估2025年時,總機動車輛數將分別為36.3與30.2 百萬輛。在能源消費變動上,最高將成長92.7%,最低仍有61.9%的增幅,總變動區間介於25.8與31.0 百萬公秉,而CO2排放變動範圍則為61.1 至73.4百萬公噸。
5.由各國能源及CO2排放趨勢可知,儘管台灣公路運輸部門的能源消費量遠低於其餘各國,然過去十五年間其能源耗用卻由1990年之6.3百萬公噸油當量增加至12.1百萬公噸油當量,年平均成長率高達4.44%,僅次於同屬發展中國家之南韓。各國公路運輸部門的CO2排放與其能源消費趨勢極為類似且皆呈穩定成長趨勢,且其中仍以日本公路運輸部門因能源耗用所產生之CO2排放量為最高,而南韓及台灣公路運輸部門之CO2排放量雖遠低於德國及日本,然其卻以高達6.17%及4.42%的年平均成長率快速成長。在因素分解結果部份,經濟成長與機動車輛數之增加是促使各國公路運輸部門CO2排放仍持續增量的主要因素。反之,人口密集度則為CO2排放減量之關鍵因素。再者,每萬輛車輛數之能源耗用除台灣呈現增量趨勢之外,其餘各國均為減量。
In this study, the decomposition analysis was adopted to explore the relative impacts of different factors on the aggregate energy consumption from the road transportation system and the private vehicles in Taiwan from 1990 to 2005. Also, the results from this method were then compared with the grey relation analysis (GRA). System dynamics model was constructed as a case study for passenger cars to simulate how vehicular operation, vehicular energy consumption and energy-related CO2 variations will be affected by the demographics, fuel price and economical growth. In order to project the future trends for the fleet size, traffic energy consumption and CO2 emissions from the road transportation system, the grey forecasting model, GM(1,1), was developed. Finally, the factors for the traffic CO2 emission increase in Germany, Japan, South Korea and Taiwan were examined to be helpful references for transportation-related CO2 emission reduction and enhancing vehicular energy efficiency in Taiwan.
The major findings of this study are summarized as follows:
1.According to the results of decomposition methodology, the rapid growths of economy and vehicle kilometers per unit vehicle were two key factors for the rise of vehicular fuel demand, whereas the energy intensity had a considerable positive effect on energy conservation. As for the road transportation system, the index of economically active population intensity was another important component for energy decrease. The comparisons between passenger cars and motorcycles suggested that the increasing of vehicular structure share had a positive effect on the increase of fuel demand.
2.Results from the grey relation analysis revealed that the increase in vehicular fuel consumption can be attributed to the fleet size and growth of economy. The factor of GEK exhibited a positive grey relation as the length of vehicle kilometers grew higher than its energy requirement. In comparison to the other factors, the influence of the fuel price and economically active population were obscure since the growth patterns of the compared series and the reference series were inconsistent.
3.According to the simulation of the system dynamics model, the amount of passenger cars in 2025 will be 8.0 million vehicles, which is higher than that of in 1990 by 5.7 million vehicles. Accompanying the growth of fleet size, the vehicular fuel consumption and energy-related CO2 emission increase by 14.2 million kiloliters and 30.8 million metric tons during 1990-2025. The scenario analysis indicates that the restriction on the use of private vehicles has relatively notable effect on energy conservation and emission decrease and follows by the impact of higher fuel price, 3% of LPG vehicles and fuel tax.
4.Results by grey forecasting model showed that the energy demand and CO2 emitted by the road transportation system continued to rise at the annual growth rate of 3.25% and 3.23% over the next 18 years, respectively. Besides, the simulation of different economic development scenario were analyzed because of the economic driving force is an important factor for the increase of transportation demand and vehicular fuel consumption. It revealed that the upper and lower bound values of the number of motor vehicles in 2025 varies from 30.2 to 36.3 million vehicles, with the traffic energy requirement lies between 25.8 million kiloliters to 31.0 million kiloliters. The corresponding emission of CO2 will be 61.1 and 73.4 million metric tons in the low and high scenario profile, respectively.
5.Decomposition analysis in each countries suggested that the rapid growths of economy and vehicle ownership were two major factors for the rapid increase of traffic CO2 emission, whereas the index of population intensity contributed significantly to emission decrease. Also, the vehicular fuel consumption per ten thousand vehicle factor contributed a considerable emission decrease in all countries, except Taiwan.
ABSTRACT ...........................................................................................I
CHINESE ABSTRACT..................................................................................III
ACKNOWLEDGMENT ...................................................................................VII
CONTENTS ..........................................................................................IX
TABLES ..........................................................................................XIII
FIGURES ...........................................................................................XV

CHAPTER 1 Introduction
1.1 Research motivation ........................................................................1
1.2 Research objective .........................................................................2
1.3 Organization of the thesis .................................................................3

CHAPTER 2 Methodology
2.1 Introduction ...............................................................................7
2.2 Decomposition analysis .....................................................................7
2.2.1 Literature review ......................................................................7
2.2.2 Divisia Index .........................................................................10
2.3 Grey theory ...............................................................................12
2.3.1 Literature review .....................................................................12
2.3.2 Grey relation analysis ................................................................14
2.3.3 Grey model construction ...............................................................17
2.3.4 Error examination .....................................................................19
2.4 System Dynamics ...........................................................................19
2.4.1 Literature review .....................................................................19
2.4.2 The concept of System Dynamics ........................................................21
2.4.3 Modeling process ......................................................................24
2.5 Data ......................................................................................26

CHAPTER 3 The variation of energy consumption and CO2 emission from the road traffic system in Taiwan
3.1 Transport energy consumption in Taiwan ....................................................29
3.2 Transport CO2 emissions in Taiwan .........................................................32
3.3 The number of motor vehicles in Taiwan ....................................................35
3.4 Energy consumption of motor vehicles in the road transportation system ....................37
3.5 Pollutant emissions of motor vehicles in the road transportation system ...................41
3.6 Summary ...................................................................................42

CHAPTER 4 The exploration of motor vehicle's energy efficiency
4.1 Introduction ..............................................................................45
4.2 Decomposition of energy consumption by the road transportation in Taiwan ..................45
4.3 Decomposition of energy consumption in passenger cars and motorcycles .....................46
4.3.1 Passenger cars ........................................................................46
4.3.2 Motorcycles ...........................................................................48
4.4 Grey relation of energy consumption in the road transportation system .....................49
4.5 Grey relation of energy consumption in passenger cars and motorcycles .....................49
4.5.1 Passenger cars ........................................................................51
4.5.2 Motorcycles ...........................................................................53
4.6 Summary ...................................................................................54


CHAPTER 5 System dynamics approach for vehicular energy consumption and CO2 emission reduction:
A case study of passenger cars
5.1 Introduction ..............................................................................57
5.2 Model description .........................................................................57
5.2.1 Human population subsystem ............................................................59
5.2.2 Gross domestic product subsystem ......................................................59
5.2.3 The operation of petrol vehicles subsystem ............................................61
5.2.4 The operation of LPG vehicles subsystem ...............................................64
5.3 The behavior of reference model ...........................................................66
5.4 Scenario Analysis .........................................................................70
5.4.1 Scenario 1: Policy intervention in private vehicles ...................................70
5.4.2 Scenario 2: Increasing the share of LPG vehicles ......................................73
5.4.3 Scenario 3: The impact of fuel price ..................................................76
5.4.4 Scenario 4: The growth ratio of gross domestic product ................................79
5.5 Summary ...................................................................................82

CHAPTER 6 The forecast of energy demand and CO2 emission by grey prediction models

6.1 Introduction ..............................................................................85
6.2 Grey Prediction Model, GM (1,1) ...........................................................85
6.3 Rolling Grey Prediction Model, RGM (1,1) ..................................................88
6.4 The modification of development coefficient ...............................................91
6.4.1 Scenario analysis of motor vehicles ...................................................93
6.4.2 Scenario analysis of transport energy consumption .....................................93
6.4.3 Scenario analysis of transport CO2 emission ...........................................96
6.5 Summary ...................................................................................96

CHAPTER 7 Decomposition of carbon dioxide emission from road transportation systems in Taiwan,
Germany, Japan and South Korea

7.1 Introduction ..............................................................................99
7.2 Data consolidation ........................................................................99
7.3 Energy consumption in Germany, Japan, South Korea and Taiwan .............................100
7.4 CO2 emission in Germany, Japan, South Korea and Taiwan ...................................102
7.5 Decomposition of CO2 emission in Germany, Japan, South Korea and Taiwan ..................104
7.5.1 Germany ..............................................................................104
7.5.2 Japan ................................................................................104
7.5.3 South Korea ..........................................................................106
7.5.4 Taiwan ...............................................................................107
7.6 Related Energy Policy in Germany, Japan and South Korea ..................................107
7.6.1 Germany ..............................................................................107
7.6.2 Japan ................................................................................110
7.6.3 South Korea ..........................................................................112
7.7 Summary ..................................................................................113

CHAPTER 8 Conclusions and Recommendations
8.1 Conclusions ..............................................................................115
8.2 Recommendation for future research .......................................................120

References .......................................................................................123
Appendix A .......................................................................................131
Anand, S., Vrat, P. and Dahiya, R. P., 2006. Application of a system dynamics approach for assessment and mitigation of CO2 emissions from the cement industry. Journal of Environmental Management 79, 383-398.
Ang, B. W. and Lee, S. Y., 1994. Decomposition of industrial energy consumption: some methodological and application issues. Energy Economics 16 (2), 83-92.
Ang, B.W. and Zhang, F. Q. and Choi, K. H., 1998. Factorizing changes in energy and environmental indicators through decomposition. Energy 23, 489-495.
Ang, B.W. and Liu, F. L., 2001. A new decomposition method: perfect in decomposition and consistent in aggregation. Energy 26, 537-548.
Ang, B.W., 2004. Decomposition analysis for policymaking in energy: which is the preferred method?. Energy Policy 32, 1131-1139.
Ang, B.W., 2005. The LMDI approach to decomposition analysis: a practical guide. Energy Policy 33, 867-871.
Ang, B.W., 2006. Monitoring changes in economy-wide energy efficiency: From energy-GDP ratio to composite efficiency index. Energy Policy 34, 574-582.
Ang, B.W., and Liu, N., 2007. Energy decomposition analysis: IEA model versus other methods. Energy Policy 35, 1426-1432.
Akay, D. and Atak, M., 2007. Grey prediction with rolling mechanism for electricity demand forecasting of Turkey. Energy 32, 1670-1675.
Bouwman, M. E., and Moll, H. C., 2002. Environmental analyses of land transportation systems in The Netherlands. Transportation Research Part D 7, 331-345.
Bureau of Energy, Ministry of Economic Affairs, Republic of China, 2007. Energy balances in Taiwan, Republic of China 2006.
Chang, T. C. and Lin, S. J., 1999. Grey relation analysis of carbon dioxide emissions from industrial production and energy uses in Taiwan. Journal of Environmental Management 56, 247-257.
Chang, S. C., Lai, H. C. and Yu, H.C., 2005. A variable p value rolling Grey forecasting model for Taiwan semiconductor industry production. Technological Forecasting & Social Change 72, 623-640.
Chaerul, M., Tanaka, M. and Shekdar, A. V., 2008. A system dynamics approach for hospital waste management. Waste Management 28, 442-449.
Chen M. C., 2007. A system Dynamics Approach for Assessing Urban Air Purification Policies. Doctoral Dissertation, National Cheng Kung University, Department of Urban Planning.
Chiao, C. H. and Wang, W. Y., 2002. Reliability improvement of fluorescent lamp using grey forecasting model. Microelectronics Reliability 42, 127-134.
Choi, K. H. and Ang, B. W., 2002. Measuring thermal efficiency improvement in power generation: the Divisia decomposition approach. Energy 27, 447-455.
Deng, J. L., 1982. Control problems of grey system. Systems and Control letters 1, 288-294.
Deng, J. L., 1989. Introduction to Grey System Theory. The Journal of Grey System 1, 1-24.
Deng, J. L., 2001. Synthesizing Kenning model and Grey Hazy Set. The Journal of Grey System 13 (3), 254.
Department of Transportation, Taipei City Government, 2007. Taipei City Transport Yearbook 2007.
Dreher, M., Wietschel, M., Göbelt, M. and Rentz, O., 1999. Energy price elasticities of energy-service demand for passenger traffic in the Federal Republic of Germany. Energy 24, 133-140.
Dyson, B. and Chang, N. B., 2005. Forecasting municipal solid waste generation in a fast-growing urban region with system dynamics modeling. Waste Management 25, 669-679.
Energy Information Administration, U.S. Department of Energy, 2006. Annual Energy Outlook 2006.
Environmental Protection Administration, R.O.C., 2005. The Subsidy to debase the price of LP-Gas.
Federal Ministry for the Environment, Nature Conservation and Nuclear Safety, 2002. Third report by the government of the Federal Republic of Germany in accordance with the Framework Convention of the United Nations.
Federal Ministry for the Environment, Nature Conservation and Nuclear Safety, 2006. Fourth national report by the government of the Federal Republic of Germany (4th National Communication).
Fiddaman, T., 2007. Dynamics of climate policy. System Dynamics Review 23, 21-34.
Forrester, J. W., 1961. Industrial Dynamics. Cambridge: MIT Press.
Forrester, J. W., 1994. System Dynamics, Systems Thinking and Soft OR. System Dynamics Review 10, 245-256.
Gonzalez, F. P. and Suarez, P. R., 2003. Decomposing the variation of aggregate electricity intensity in Spanish industry. Energy 28, 171-184.
Greening, L.A., Ting, M. and Davis, W.B., 1999. Decomposition of aggregate carbon intensity for freight: trends from 10 OECD countries for the period 1971-1993. Energy Economics 21, 331-361.
Gui, S., Zhu, Q. and Lu, L., 2005. Area logistics system based on system dynamics model. Tsinghua Science and Technology 10, 265-269.
Guo, H. C., Liu, L., Huang, G. H., Fuller, G. A., Zou, R. and Yin, Y. Y., 2001. A system dynamics approach for regional environmental planning and management: A study for the Lake Erhai Basin. Journal of Environmental Management 61, 93-111.
Haldenbilen, S. and Ceylan, H., 2005. Genetic algorithm approach to estimate transport energy demand in Turkey. Energy Policy 33, 89-98.
Haldenbilen, S., 2006. Fuel price determination in transportation sector using predicted energy and transport demand. Energy Policy 34, 3078-3086.
He, K., Huo, H., Zhang, Q., He, D., An, F., Wang, M., and Walsh, M. P., 2005. Oil consumption and CO2 emissions in China’s road transport: current status, future trends, and policy implications. Energy Policy 33, 1499-1507.
Howarth, R.B., Schipper, L., 1991. Manufacturing energy use in eight OECD countries: Decomposing the impacts of changes in output, industry structure and energy intensity. Energy Economics 13, 135-142.
Hu, W. and Yang, C., 2000. Grey model of direct solar radiation intensity on the horizontal plane for cooling loads calculation. Building and Environment 35, 587-593.
Hung, T. Y., 2006. A System Dynamic Relationship between Mass Rapid Transit Development and Urban Compactness. Master's thesis, National Cheng Kung University, Department of Transportation & Communication Management Science.
Hsu, C. C. and Chen, C.Y., 2003. Applications of improved grey prediction model for power demand forecasting. Energy Conversion and Management 44, 2241-2249.
Ibrahim, M. F., 2003. Improvements and integration of a public transport system: the case of Singapore. Cities 20, 205-216.
Institute of Transportation, Ministry of Transportation and Communications R.O.C., 1999. The third Taiwan area integrated transportation systems planning study-forecast and analysis of systems demand and supply.
Institute of Transportation, Ministry of Transportation and Communications R.O.C., 2003. Energy Demand Forecast of the Transportation Sector.
International Energy Agency, 2000. Road from Kyoto-The current CO2 and transport policies in the IEA.
International Energy Agency, 2004. Energy policies of IEA countries-Netherlands 2004 Review.
International Energy Agency, 2007. Key World Energy Statistics 2007.
International Road Federation, 2003. World Road Statistics.
Kummerow, M., 1999. A system dynamic model of cyclical office oversupply. Journal of Real Estate Research 18, 233-255.
Kuo, H. L., 2005. Effects of Globalization on the Sustainable Urban Development in Taiwan-Application of Sensitivity Model. Master's thesis, National Taipei University, The Graduate Institute of Urban Planning.
Kwon, T. H., 2005. A scenario analysis of CO2 emission trends from car travel: Great Britain 2000-2030. Transport Policy 12, 175-184.
Lauber, V., and Mez, L., 2004. Three decades of renewable electricity policies in Germany. Energy & Environment 15, 599-623.
Lee, C. F. and Lin, S. J., 2001. Structural decomposition of CO2 emissions from Taiwan’s petrochemical industries. Energy Policy 29, 237-244.
Lee, S., 2001. Sustainable transport development in the Republic of Korea: Policy measures to contain energy consumption and greenhouse gas emissions through reduction in transport demand. Transport and Communications Bulletin for Asia and the Pacific 71, 29-52.
Li, C. H., 2003. Applying the Grey prediction model to the global integrated circuit industry. Technological Forecasting & Social Change 70, 563-574.
Liang, R. H., 1999. Application of grey relation analysis to hydroelectric generation scheduling. Electrical Power and Energy Systems 21, 357-364.
Lin, C. T. and Yang, S. Y., 2003. Forecast of the output value of Taiwan’s opto-electronics industry using the Grey forecasting model. Technological Forecasting & Social Change 70, 177-186.
Lin, C. H., Tung, C. M. and Huang C. T., 2006. Elucidating the industrial cluster effect from a system dynamics perspective. Technovation 26, 473-482.
Lin, S. J. and Chang, T. C., 1996. Decomposition of SO2, NOx and CO2 emissions from energy use of major economic sectors in Taiwan. The Energy Journal 17, 1-17.
Lin, S. J., Lu, I. J. and Lewis, C., 2006. Identifying key factors and strategies for reducing industrial CO2 emissions from a non-Kyoto protocol member’s (Taiwan) perspective. Energy Policy 34, 1499-1507.
Lin, S. J., Lu, I. J. and Lewis, C., 2007. Grey relation performance correlations among economics, energy use and carbon dioxide emission in Taiwan. Energy Policy 35, 1948-1955.
Liu, W. J., 2003. Evaluation of the fuel quality control policy and the control measures for reducing the emission of mobile-a system dynamic approach. Master's thesis, National Taipei University, Institute of Natural Resources Management.
Litman, T., 2005. Efficient vehicles versus efficient transportation. Comparing transportation energy conservation strategies. Transport Policy 12, 121-129.
Lu, I. J., Lin, S. J. and Lewis, C., 2007. Comparison of energy performance between passenger cars and motorcycles in Taiwan by decomposition analysis. Energy 2007, 197-205. (20 - 22 June, conference in UK)
Lynn, S., Lee, S. and Nancy, K., 1996. CO2 emissions from passenger transport. Energy Policy 24, 17-30.
Mao, M., and Chirwa, E. C., 2006. Application of grey model GM (1,1) to vehicle fatality risk estimation. Technological Forecasting & Social Change 73, 588-605.
Mazzarino, M., 2000. The economics of the greenhouse effect: evaluating the climate change impact due to the transport sector in Italy. Energy Policy 28, 957-966.
Mielnik, O., and Goldemberg, J., 2002. Foreign direct investment and decoupling between energy and gross domestic product in developing countries. Energy Policy 30, 87-89.
Ministry of Land, Transport and Maritime Affairs, Republic of Korea, 2007. The Statistics Yearbook 2006.
Ministry of Land, Infrastructure, Transport and Tourism, Japan, 2008. Monthly Statistical Report on Motor Vehicle Transport.
Ministry of the Interior, R.O.C., 2007. Statistical Yearbook of Interior.
Ministry of Transportation and Communications R.O.C., 2007. Statistical Abstract of Transportation and Communications.
Ministry of Transportation and Communications R.O.C., 2006. The investigation of passenger cars behavior in 2006.
Morecroft, J. D.W., 1984. Strategy Support Models. Strategic Management Journal 5, 215-229.
Morita, H., Kase, T., Tamura, Y. and Lwamoto, S., 1996. Interval prediction of annual maximum demand using grey dynamic model. Electrical Power & Energy Systems 18, 409-413.
Mu, H., Kondou, Y., Tonooka, Y., Sato,Y., Zhou, W., Ning, Y. and Sakamoto, K., 2004. Grey relative analysis and future prediction on rural household biofuels consumption in China. Fuel Processing Technology 85, 1231-1248.
OECD, 2002. Indicators to measure decoupling of environmental pressure from economic growth.
Pai, T. Y., Hanaki, K., Ho, H. H. and Hsieh, C. M., 2007. Using grey system theory to evaluate transportation effects on air quality trends in Japan. Transportation Research Part D 12, 158-166.
Paul, S. and Bhattacharya, R. N., 2004. CO2 emission from energy use in India: a decomposition analysis. Energy Policy 32, 585-593.
Piattelli, M. L., Cuneo, M. A., Bianchi, N. P., and Soncin, G., 2002. The control of goods transportation growth by modal share re-planning: the role of a carbon tax. System Dynamics Review 18, 47-69.
Rajan, S. C., 2006. Climate change dilemma: technology, social change or both? An examination of long-term transport policy choices in the United States. Energy Policy 34, 664-679.
Ramanathan, R., and Parikh, J. K., 1999. Transport sector in India: an analysis in the context of sustainable development. Transport Policy 6, 35-45.
Ramanathan, R., 1999. Short- and long-run elasticities of gasoline demand in India: An empirical analysis using cointegration techniques. Energy Economics 21, 321-330.
Ramanathan, R., 2001. The long-run behaviour of transport performance in India: a cointegration approach . Transportation Research Part A 35, 309-320.
Rodney, S., 1995. Road transport energy demand in Australia. Energy Economics 17, 329-339.
Rodrigues, A. and Bowers, J., 1996. The role of system dynamics in project management. International Journal of Project Management 14, 213-220.
Saysel, A. K., Barlas, Y., and Yenigün, 2002. Environmental sustainability in an agricultural development project: a system dynamics approach. Journal of Environmental Management 64, 247-260.
Shrestha, R, M. and Timilsina, G. R., 1996. Factors affecting CO2 intensity of power sector in Asia: A Divisia decomposition analysis. Energy Economics 18, 283-293.
Steenhof, P. A., 2006. Decomposition of electricity demand in China’s industrial sector. Energy Economics 28, 370-384.
Steenhof, P. A., 2007. Decomposition for emission baseline setting in China’s electricity sector. Energy Policy 35, 280-294.
Sterman, J., D., 2000, Business Dynamics: Systems Thinking and Modeling for a Complex World. Irwin McGraw-Hill.
Stead, D., 2001. Transport intensity in Europe-indicators and trends. Transport Policy 8, 29-46.
Sufian, M. A. and Bala, B. K., 2007. Modeling of urban solid waste management system: The case of Dhaka city. Waste Management 27, 858-868.
Taiwan Environmental Protection Administration, 2007. Taiwan Emission Database System (version 6.1).
Taiwan Environmental Protection Administration, 2005. The subsidy to debase the price of LP-Gas.
Taiwan Environmental Protection Administration, 2007. The subsidy to debase the price of LP-Gas.
Taipei Rapid Transit Corporation, 2007. Taipei Rapid Transit Corporation Annual Report 2006.
Tapio, P., 2005. Towards a theory of decoupling: degrees of decoupling in the EU and the case of road traffic in Finland between 1970 and 2001. Transport Policy 12, 137-151.
Tseng, F. M., Yu, H. C. and Tzeng, G. H., 2001. Applied hybrid grey model to forecast seasonal time series. Technological Forecasting and Social Change 67, 291-302.
The Government of Japan, 2002. Japan’s Third National Communication under the United Nations Framework Convention on Climate Change.
The Government of Japan, 2006. Japan’s Fourth National Communication under the United Nations Framework Convention on Climate Change.
The Government of the Republic of Korea, 2003. Second National Communication of the Republic of Korea under the United Nations Framework Convention on Climate Change.
Uchiyama, Y., 2002. Present efforts of saving energy and future energy demand/supply in Japan. Energy Conservation and Management 43, 1121-1131.
Van, Vuuren, D.P. Strengers, B. J. and De, Vries, H.J.M. 1999. Long-term perspectives on world metal use-a system dynamics model. Resources Policy 25, 239-255.
Vezjak, M., Savsek, T. and Stuhler, E. A., 1998. System dynamics of euthrophication processes in lakes. European Journal of Operational Research 109, 442-451.
Wang, R. T., Ho, C. T., Feng, C. M. and Yang, Y. K., 2004. A comparative analysis of the operational performance of Taiwan’s major airports. Journal of Air Transport Management 10, 353-360.
Wu, C.C. and Chang N. B., 2003. Grey input-output analysis and its application for environmental cost allocation. European Journal of Operational Research 145,175-201.
Wu, W. Y. and Chen, S. P., 2005. A prediction method using the grey model GMC (1,n) combined with the grey relational analysis: a case study on Internet access population forecast. Applied Mathematics and Computation 169, 198-217.
Wüstenhagen, R., and Bilharz, M., 2006. Green energy market development in Germany: effective public policy and emerging customer demand. Energy Policy 34, 1681-1696.
Yedla, S. and Shrestha, R. M., 2003. Multi-criteria approach for the selection of alternative options for environmentally sustainable transport system in Delhi. Transportation Research Part A 37, 717-729.
Zhang, Z., 2000. Decoupling China’s carbon emissions increase from economic growth:An economic analysis and policy implications. World Development 28 (4), 739-752.
Zhou, P., Ang, B. W., and Poh, K. L., 2006. A trigonometric grey prediction approach to forecasting electricity demand. Energy 31, 2503-2511.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊