跳到主要內容

臺灣博碩士論文加值系統

(3.236.124.56) 您好!臺灣時間:2021/07/31 06:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李澤坤
研究生(外文):Ze-Kun Lee
論文名稱:蔬菜廚餘厭氧氫醱酵程序及流體化床醱酵槽改良設計之研究
論文名稱(外文):Anaerobic Bio-energy Process Study on Hydrogen Fermentation with Vegetable Kitchen Waste and Modification of AnFB Fermentor
指導教授:鄭幸雄鄭幸雄引用關係
指導教授(外文):Sheng-Shung Cheng
學位類別:碩士
校院名稱:國立成功大學
系所名稱:環境工程學系碩博士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:198
中文關鍵詞:流體化床纖維素高溫厭氧氫醱酵高溫廚餘堆肥蔬菜廚餘
外文關鍵詞:Thermosphilic anaerobic hydrogen fermentationCelluloseVegetable kitchen wasteAnaerobic fluidized bed reactorKitchen waste compost
相關次數:
  • 被引用被引用:6
  • 點閱點閱:228
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究團隊以工人挑選廚餘中蔬菜類的部分並進行11次的採樣特性分析,蔬菜廚餘主要由碳水化合物 (33%)、脂肪 (32%)、蛋白質 (23%)以及有機揮發酸 (8%)所組成,其中纖維素的重量約佔整體的10%左右。本研究所選用的植種源主要取自台南市城西里的高溫廚餘堆肥,在試程啟動前,進行一套蔬菜廚餘氫醱酵pH最適化試驗,結果顯示食微比S0/X0= 3 於pH 6.0的高溫環境下,有最佳的產氫速率0.57 mmol-H2/g-VSS/hr以及氫氣產率0.48 mmol-H2/g-COD。在反應器操作方面,使用20 L完全攪拌式反應槽以間歇性進流方式進行連續91天的操作,試程期間蔬菜廚餘的特性有很大的變異,使得產氫表現以及系統微生物生態有很大的變化。第二試程在體積荷負為28 g-COD/L/day下,有最高產氫速率約為1.0 L-H2/L/day以及氫氣產率1.7 mmol-H2/g-CODin;第一試程在體積負荷為19 g-COD/L/day下,有機固體物有較好的破壞率為45%,其中固體碳水化合物以及纖維素去除率分別為62、37%。藉由16S rRNA基因選殖與定序的方法建立系統微生物資料庫,發現系統的微生物生態以Thermoanaerobacterium thermosaccharolyticum為主約佔57%左右,在高溫厭氧環境下具有降解纖維素、澱粉等醣類物質進行產氫的能力。試程期間以微生物資料庫作為基礎進行「尾端修飾限制片段長度多形性」分析,達到快速監測系統微生物的變化資訊,試程期間微生物生態的變異很大,在Run 2操作期間發現進流基中有與系統微生物相似的Clostridium菌屬存在。在完全攪拌式反應槽操作經驗的基礎下,本研究亦以流體化床式反應槽進行改良設計,在槽內設置導流管造成流體在管內、外循環攪拌,藉由噴嘴(Jet)裝置混合迴流水和槽頂氣體作為攪拌動力來源。在廻流水置換率25次/小時、氣體迴流量為0.4 L/min時,延散程度可達D/uL =2.3,達到流體均勻分佈的效果,另外在槽頂設置污泥廻流系統將產生的浮渣返送至槽底。將前試程所馴養的污泥植入流體化床反應槽,在25天的試程操作期間受到浮渣堵塞問題導致氣體計量上的問題,造成產氫的功能被低估,在體積負荷為14 g-COD/L/day時其產氫速率以及氫氣產率分別為0.26 L-H2/L/day、0.8 mmol-H2/g-CODin。
The characterisitics analysis for wasted vegetable selected from kitchen waste collected from Taian City by local EPA. According to 11 times of analyses data, the complex composition of vegetable kitchen waste was found. It includes 33% of carbohydrates, 32% of oil and grease, 23% of protein, and 8% volatile fatty acids. The vegetable kitchen wastes which conent 10% of cellulose were considered as the hardly-degradable substrate because of its crystalline-like structure. The purpose of the optimal pH in the hydrogen fermentation fed with vegetable kitchen wasted and seed with kitchen waste compost was proceed at he batch test with pH control system. The maximum hydrogen production rate and hydrogen yield were found at pH = 6.0, and they were achieved to 0.57 mmol-H2/g-VSS/hr and 0.48 mmol-H2/g-COD, respectively. The continuous stirred tank reactor (CSTR) with 20 L working volume was established to study for anaerobic bio-H2 process fed with vegetable kitchen waste. In 91 days of operation, the maximum hydrogen production rate of 1.0 L-H2/L/day and the yield of 1.7 mmol-H2/g-CODin were observed with the volumetric loading rate (VLR) of 28 g-COD/L/day in Run 2. The higher VSS, carbohydrate, and cellulose removal were 45, 62, and 37%, respectively at VLR 19 g-COD/L/day in Run 1. According to the results of 16S rDNA clone library and sequence, the dominant species was Thermoanaerobacterium thermosaccharolyticum, which was considered as an anaerobic thermophilic hydrogen-prodcing bacteria degrading cellulose, starch and so on. Terminal restriction fragment length polymorphism, T-RFLP was established to monitor the microbial culturies in the period of process operation. The dynamics of microbial cultures change dramatically. It would find the similar dominant culture, Clostridium species, in vegetable kitchen waste to those in the reactor. For better mixing effieciency, we modified the fluidized bed reactor by quipping the draft tube and jet. According to residence time distribution analysis, the reactor type was closed to CSTR and tracer recovery was attended to 100%. When the D/uL ratio was on the level of 0.4 L/min, the dispersion effect was up to 2.3 (D/uL) at flow recirculation frequency 25 times per hour. In addition, we equipped the scum recirculation in the top of reactor for removal the cumalitive scum. At start-up bio-H2 ananerobic fluidized bed reactor (AnFB), the enriched slurry from above process was seeded as seeding source. Around 25 days operating period, it would find the hydrogen production rate and yield were 0.26 L-H2/L/day, 0.8 mmol-H2/g-CODin in the volumtirc loading rate 14 g-COD/L/day. Cause of block in the air pipe by scum, the hydrogen performace was discount by uncomplete gas collection.
目錄
中文摘要 III
Abstract V
誌謝 VII
表目錄 XIII
圖目錄 XV
第一章 前言 1
第二章 文獻回顧 5
2-1. 全球能源發展趨勢與生物氫能未來之展望 5
2-2 台灣廚餘特性以及回收再利用之現況 7
2-3 纖維素結構及纖維素分解菌 11
2-3-1 纖維素的結構與特性 11
2-3-2 纖維素水解酵素的類型與作用機制 14
2-3-3 纖維素分解菌 16
2-4 厭氧生物產氫技術 25
2-4-1 厭氧醱酵產氫微生物 25
2-4-2 厭氧生物產氫機制探討 27
2-5 厭氧流體化床反應槽 37
2-6 流體停留時間分佈分析(Residence time distribution (RTD) analysis) 41
2-7 分子生物技術應用於產氫微生物族群之探討 45
2-8 台灣廚餘厭氧醱酵程序之發展現況 49
第三章 研究材料與方法 51
3-1 高溫厭氧生物氫醱酵槽 51
3-1-1 間歇性進流完全攪拌反應槽 (I-CSTR) 51
3-1-2 間歇進流厭氧流體化床 (AnFB) 53
3-2 pH自動控制之批次反應器 59
3-3 水質分析項目與使用儀器 61
3-3-1 一般水質分析項目 61
3-3-2 儀器分析 62
3-4 纖維素水解酵素活性分析 65
3-5 生化氫氣產能試驗及生物活性量測 67
3-5-1 生化氫氣產能試驗 67
3-5-2 生物活性量測數據整理方式 67
3-6 掃描式電子顯微鏡 Scanning Electron Microscope(SEM) 69
3-7 分子生物檢測技術 71
3-7-1 總DNA 萃取 71
3-7-2 聚合酵素連鎖反應(Polymerase Chain Reaction, PCR) 73
3-7-3 尾端修飾限制片段長度多形性(T-RFLP) 74
3-7-4 16S rDNA基因選殖實驗(clone library) 75
第四章 結果與討論 79
4-1 台南市蔬菜類廚餘特性分析 79
4-2 蔬菜類廚餘厭氧產氫影響因子篩選 87
4-2-1 多因子設計試驗 87
4-2-2 酸鹼環境(pH levels)的影響 95
4-3 蔬菜類廚餘間歇進流完全攪拌氫醱酵槽試程功能之探討 105
4-3-1 試程操作策略研擬 105
4-3-2 試程操作情形與功能指標之探討 107
4-3-3 試程期間反應物與代謝產物的轉變 112
4-3-4 間歇性進流之蔬菜氫醱酵機制探討 117
4-3-5 以掃描式電子顯微鏡觀察微生物菌相 121
4-3-6 16S rRNA 基因選殖實驗 (clone library) 123
4-3-7 厭氧氫醱酵系統微生物族群變化之探討 128
4-4 高溫厭氧氫醱酵流體化床改良設計與運轉操作之探討 133
4-4-1 流體化床反應槽改良設計之探討 134
4-4-2 流體化床反應槽流力試驗 137
4-4-3 改良型與一般的流體化床流力比較之探討 140
4-4-4 高溫厭氧氫醱酵流體化床試程操作之探討 142
4-5 有機固體廢棄物醱酵產氫研究之比較 151
第五章 結論與建議 154
第六章 參考文獻 157
Adams MWW, Mortenson LE and Chen JS, Hydrogenase, Biochimica et Biophysica Acta 594:105-176 (1980).
Albracht SPJ, Spectroscopy the functional puzzle, in Hydrogen as a Fuel: Learning From Nature, ed by Cammack R, Frey M and Robson R, Taylor and Francis. London and New York (2001).
Amann R, LudwigW and Schleifer KH, Phylogentic identification and in situ detection of individual microbial cells without cultivation, Microbiol Rev 59:143–169 (1995).
Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R and Stahl DA, Combination of 16S rRNA-targeted oilgonucleotide probes with flow cytometry for analyzing mixed microbial population, Appl Environ Microbiol 56:1919-1925 (1990).
An DS, Im W. T, Ynag HC, Kang M. S. Kim KK and Lee ST, Cellulomonas terrae sp. nov., a cellulolytic and xylanolytic bacterium isolated from soil. Int J Syst Evol Microbiol 55:1705- 1709 (2005).
Angelidaki I and Sanders W, Assessment of the anaerobic biodegradability of macropollutants. Rev Environ Sci Biotechnol 3:117–29 (2004).
Angenent LT, Karim K, Al-Dahhan MH, Wrenn BA and Domı´guez-Espinosa R, Production of bioenergy and biochemicals from industrial and agricultural wastewater. Trends Biotechnol 22:477-485 (2004).
APHA, AWWA, and WEF, Standard methods for the examination of water and wastewater, 21st edn, American Public Health Association, Washington DC (2005).
Bahl H and Dürre P, Clostridia, In Biotechnology, A Multi-Volume Comprehensive Treatise, 2nd edn, Vol. 1, ed by Rehm HJ, Reed G, Pühler A and Stadler P, VCH Verlagsgesellschaft, Weinheim, Germany, pp 285-323 (1993).
Bakalidou A, Kampfer P, Berchtold M, Kuhnigk T, Wenzel M and Konig H, Cellulosimicrobium variabile sp. nov., a cellulolytic bacterium from the hindgut of the termite Mastotermes darwiniensis. Int. J Syst Evol Microbiol 52:1185-1192 (2002).
Baronofsky JJ, Schreurs WJA and Kashket EV, Uncoupling by acetic acid limits growth of and acetogenesis by Clostridium thermaceticum. Appl Environ Microbiol 48:1134-1139 (1984).
Batstone DJ, Damien J, Keller J, Angelidaki I, Kalyuzhny SV, Pavlostathis SG, Rozzi A, Sanders WTM, Siegrist H and Vavilin VA, Anaerobic Digestion Model No. 1 (ADM1), International Water Association, London, pp 1-5 (2002).
Bayer E.A, Belaich JP, Shoham Y and Lamed R, The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides. Annu Rev Microbiol 58:521-554 (2004).
Berger E, Jones WA, Jones DT and Woods DR, Sequencing and expression of a cellodextrinase (ced1) gene from Butyrivibrio fibrisolvens H17c cloned in Escherichia coli. Mol Gen Genet 223:310-318 (1990).
Bhat MK and Bhat S, Cellulose degrading enzymes and their potential industrial application. Biotechnol Adv 15:583-620 (1997).
Bredholt S, Sonne-Hansen J, Nielsen P, Mathrani IM and Ahring BK, Caldicellulosiruptor kristjanssonii sp. nov., a cellulolytic, extremely thermophilic, anaerobic bacterium. Int J Syst Bacteriol 49:991-996 (1999).
Brosseau JD and Zajic JE, Hydrogen-gas production with Citrobacter intermedius and Clostridium pasteurianum, J Chem Technol Biotechnol 32:496-502 (1982).
Canganella F and Wiegel J, The potential of thermophilic clostridia in biotechnology, in The Clostridia and Biotechnology, ed by Woods DR, Butterworth-Heinemann, Stoneham, pp 393-417 (1993).
Cann IKO, Kocherginskaya S, King MR, White BA and Mackie RI, Molecular cloning, sequencing, and expression of a novel multidomain mannanase gene from Thermoanaerobacterium polysaccharolyticum. J Bacteriol 181:1643-1651 (1999).
Cann IKO, Stroot PG, Mackie KR, White BA and Mackie RI, Characterization of two novel saccharolytic, anaerobic thermophiles, Thermoanaerobacterium polysaccharolyticum sp. nov. and Thermoanaerobacterium zeae sp. nov., and emendation of the genus Thermoanaerobacterium. Int J Syst Evol Microbiol 51:293-302 (2001).
Chen JQ and Weimer PJ, Competition among three predominant ruminal cellulolytic bacteria in the absence or presence of non-cellulolytic bacteria. Anim Feed Sci Technol 93:115-123 (2001).
Chen JS and Mortenson LE, Purification and properties of hydrogenase from Clostridium pasteuriamun W5. Biochimica Biophysica Acta 371:283-298 (1974).
Chen NH, Process reactor design, Allyn and Bacon, Boston, USA, pp 408-429 (1983).
Cheng SS, Tseng IC and Bai MD, Behavior study of anaerobic hydrogenation from different organic substrates with selected hydrogen production bacteria. Proc of the 7th IWA Asic-Pacific Regional Conference, Taipei, Taiwan. 759-764 (1999).
Cho KM, Hong Sy, Lee Sm, Kim YH, Kahng GG, Kim H and Yun HD, A cel44C-man26A gene of endophytic Paenibacillus polymyxa Gs01 has multi-glycosyl hydrolases in two catalytic domains. Appl Microbiol Biotechnol 73:618-630 (2006).
Collins MD, Lawson PA, Willems A, Cordoba JJ, Fernandez-Garayzabal J, Garcia P, Cai J, Hippe H and Farrow JA, The phlogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 44:812-826 (1994).
Dabrock B, Bahl H and Gottschalk G, Parameters affecting solvent production by Clostridium pasteuriamun, Appl Environ Microbiol 58:1233-1239 (1992).
Daesch G and Mortenson LE, Sucrose catabolism in Clostridium pasteurianum and its relation to N2 fixation. J Bacteriol 96:346-351 (1968).
Das D and Veziroğlu TN, Hydrogen production by biological processes: a survey of literature. Int J Hydrogen Energy 26:13-28 (2001).
Demain AL, Newcomb M and Wu JH, Cellulase, clostridia, and ethanol. Mol Biol Rev 69:124-154 (2005).
Desvaux M, Clostridium cellulolyticum: model organism of mesophilic cellulolytic clostridia. FEMS Microbiol Ecol Rev 29:741-764 (2005).
Desvaux M, Guedon E and Petitdemange H, Cellulose catabolism by Clostridium cellulolyticum growing in batch culture on defined medium. Appl Environ Microbiol 66:2461-2470 (2000).
Desvaux M, Unravelling Carbon metabolism in anaerobic cellulolytic bacteria. Biotechnol Prog 22:1229-1238 (2006).
Diez-Gonzalez F, Russell JB and Hunter JB, The role of an NAD-independent lactate dehydrogenase and acetate in the utilization of lactate by Clostridium acetobutylicum strain P262. Arch Microbiol 164:36-42 (1995).
Ding SY, Bayer EA, Steiner D, Shoham Y and Lamed R, A novel cellulosomal scaffoldin from Acetivibrio cellulolyticus that contains a family 9 glycosyl hydrolase. J Bacteriol 181: 6720-6729 (1999).
Ding SY, Bayer EA, Steiner D, Shoham Y and Lamed R, A scaffoldin of the Bacteroides cellulosolvens cellulosome that contains 11 type II cohesions. J Bacteriol 182:4915-4925 (2000).
Drake HL, Acetogenesis, acetogenic bacteria, and the acetyl-CoA `Wood/Ljungdahl' pathway: past and current perspectives, in Acetogenesis, ed by Drake HL, Chapman and Hall, New York, pp 3-60 (1994).
Duangmanee T, Padmasiri SI, Simmons JJ and Sung S, Hydrogen Production by Anaerobic Microbial Communities Exposed to Repeated Heat Treatments. Wat Environ Res 79:975-983 (2007).
Dunn S, Hydrogen futures: toward a sustainable energy system. Int J Hydrogen Energy 27:235-264 (2002).
Environmental Protection Administration Exeutive Yuan, R.O.C. (Taiwan). http://www.epa.gov.tw/ [Acecessed 25 May 2008].
Fabiano B and Perego P, Thermodynamic study and optimization of hydrogen production by Enterobacter aerogenes. Int J Hydrogen Energy 27:149-156 (2002).
Fan LS, Gas-liquid-solid fluidization engineering, Butterworth publishers, USA, pp 33-37(1989).
Fang HHP and Liu H, Effect of pH on hydrogen production from glucose by a mixed culture. Bioresour Technol 82:87-93 (2002).
Fang HHP, Li CL and Zhang T, Acidophilic biohydrogen production from rice slurry. Int J Hydrogen Energy 31:683-692 (2006).
Ferris MJ, Muyzer G and Ward DM, Denaturing gradient gel electrophoresis profiles of 16S rRNA-defined populations inhabiting a hot spring microbial mat community. Appl Environ Microbiol 62:340-346 (1996).
Fujino E, Fujino T, Karita S, Kimura T, Sakka K and Ohmiya K, Purification and characterization of the Clostridium josui porphobilinogen deaminase encoded by the hemC gene from a recombinant Escherichia coli. J Biosci Bioeng 87:535-537 (1999).
Fumiaki T, Chang JD, Mizukami N, Tatsuo ST and Katsushige H, Isolation of a hydrogen-producing bacterium Clostridium beijerinckii strain AM21B, from termites. Can J Microbiol 39:726-730 (1993).
Gal L, Pages S,Gaudin C, Belaich A, Reverbel-Leroy C, Tardif and Belaich JP, Characterization of the cellulolytic complex (cellulosome) of Clostridium acetobutylicum. Appl Environ Microbiol 63:903-909 (1997).
Girbal L and Soucaille P, Regulation of Clostridium acetobutylicum metabolism as revealed by mixed-substrate steady-state continuous cultures: role of NADH/NAD ratio and ATP pool. J Bacteriol 176:6433-6438 (1994).
Gottschalk G, Bacterial Metabolism, 2nd edn, Springer-Verlag, New York, pp 276-279 (1985).
Han SK and Shin HS, Performance of an innovative two-stage process converting food waste to hydrogen and methane. J Air & Waste Managet Assoc 54:242-249 (2004).
Hawkes FR, Dinsdale R, Hawkes DL and Hussy I, Sustainable fermentative hydrogen production: challenges for process optimization. Int J Hydrogen Energy 27:1339-1347 (2002).
Henfner RA, The age of energy gases, 10th Repsol-Harvard Seminar on Energy Policy, Madrid, Spain (1999).
Herbert D, Philipps PJ and Strange RE, Carbohydrate analysis, Methods Enzymol 5:265-277 (1971).
Hethener P, Brauman A and Garcia JL, Clostridium termitidis sp. nov., a cellulolytic bacterium from the gut of the wood-feeding termite, Nasutitermes lujae. System Appl Microbiol 15: 52-58 (1992).
Heyndrickx M, Vauterin L, Vandamme P, Kersters K and Vos PD, Applicability of combined amplified ribosomal DNA restriction analysis (ARDRA) patterns in bacterial phylogeny and taxonomy. J Microbiol Methods 26:247-259 (1996).
Heyndrickx M, Vos PD and Ley JD, Fermentation characteristics of Clostridium pasteurianum LMG 3285 grown on glucose and mannitol. J Appl Microbiol 70:3233-3241 (1991).
Hippe H, Andreesen JR and Gottschalk G, The Genus Clostridium - Nonmedical, in The Prokaryotes, 2nd edn,Vol. 3, ed by Balows H, Truper HG, Dworkin M, Hareder W and Schleifer KH, Springer-Verlag, New York, pp 1800-1825 (1992).
Holst TC, Truc A and Pujol R, Anaerobic fluidized beds: ten years of industrial experience. Wat Sci Technol, 36:415-422 (1997).
Horiuchi J, Shimizu T, Kanno T and Kobayashi M, Dynamic behavior in response to pH shift during anaerobic acidogenesis with a chemstat culture. Biotechnol Bioeng 13:155-157 (1999).
Hussy I, Hawkes FR, Dinsdale R and Hawkes DL, Continuous fermentative hydrogen production from sucrose and sugarbeet. Int J Hydrogen Energy 30:471-483 (2005).
Jeong H, Yi H, Sekiguchi Y, Muramatsu M, Kamagata Y and Chun J, Clostridium jejuense sp nov., isolated from soil. Int J Syst Evol Microbiol 54:1465-1468 (2004).
Jones MM, Schoenheit JE and Weaver AD, Pretreatment and heavy-metal ld50 values. Toxicol Appl Pharmacol 49:41-44 (1979).
Junelles AM, Janati-Idrissi R, Petitdemange H and Gay R, Iron effect on acetone butanol fermentation. Curr Microbiol 17:299-303 (1988).
Jungermann K, Thauer RK, Leimenstoll G and Decker K, Function of reduced pyridine nucleotide-ferredoxin oxidoreductases in saccharolytic Clostridia. Biochimi Biophys Acta 305:268-280 (1973).
Kalia VC, Jain SR, Kumar A and Joshi AP, Fermentationof bio-waste to H2 by Bacillus lichenoformis. World J of Microbio Biotechnol 10:224-227 (1994).
Kataoka N, Miya A and Kiriyama K, Studies on hydrogen production by continuous culture system of hydrogen producing anaerobic bacteria. Wat Sci Technol 36:41-47 (1997).
Kato S, Haruta S, Cui ZJ, Ishii M and Igarahi Y, Effective cellulose degradation by a mixed-culture system composed of a cellulolytic Clostridium and aerobic non-cellulolytic bacteria. FEMS Microbiol Ecol 51:133-142 (2004).
Kelly WJ, Asmundson RV and Hopcroft DH, Isolation and characterization of a strictly anaerobic, cellulolytic spore former: Clostridium chartatabidum sp. nov. Arch Microbiol 147:169-173 (1987).
Kim CH, Characterization and substrate specificity of an endo-��1, 4-D-glucanase I (Avicelase I) from an extracellular multienzyme complex of Bacillus circulans. Appl Environ Microbiol 61:959-965 (1995).
Kirby J, Martin JC, Daniel AS and Flint HJ, Dockerin-like sequences in cellulases and xylanases from the rumen cellulolytic bacterium Ruminococcus flavefaciens. FEMS Microbiol Let 149:213-2199 (1997).
Klijn N, Bovie C, Dommes J, Hoolworf JD, Waals CBVD, Weerkamp AH and Nieuwenhof FFJ. Identification of Clostridium tyrobutyricum and related species using sugar fermentation, organic acid formation and DNA probes based on specific 16S rRNA sequences. Syst Appl Microbiol 17:249-256(1994).
Ko CH, Chen WL, Tsai CH, Jane WN, Liu CC and Tu J, Paenibacillus campinasensis BL11: A wood material-utilizing bacterial strain isolated from black liquor. Bioresour Technol 98:2727-2733 (2006).
Kontturi E, Tammelin T, and Osterberg M, Cellulose-model films and the fundamental approach. Chem Soc Rev 35:1287-1304 (2006).
Kotay SM and Das D, Biohydrogen as a renewable energy resource prospects and potentials. Int J Hydrogen Energy 33:258-263 (2008).
Kumar N and Das D, Production and purification of alpha-amylase from hydrogen-producing Enterobacter cloacae IIT-BT 08. Bioprocess Biosyst Eng 23:205-208 (2000).
Kuo C and Lai WL, Development of a mobile thermophilic anaerobic digestion system treating kitchen waste. Workshop of Anaerobic digestion in mountain area (and in isolated rural zones), Chambery, France (2007).
Lamed R, Morag E, Moryosef O and Bayer EA, Cellulosome-like entities in Bacteroides cellulosolvens. Curr Microbiol 22: 27-34(1991).
Lamed R, Naimark J, Morgenstern E and Bayer EA, Specialized surface structure in cellulolytic bacteria. J Bacteriol 169:3792-3800 (1987).
Lamed R, Setter E and Bayer EA, Characterization of a cellulose-binding, cellulolase-containing complex in Clostridium thermocellum. J Bacteriol 156:828-836 (1983).
Lay JJ, Biohydrogen generation by mesophilic anaerobic fermentation of microcrystalline cellulose. Biotechnol Bioeng 74:280-287 (2001).
Lay JJ, Lee YJ and Noike T, Feasibility of biological hydrogen production from organic fraction of municipal solid waste. Water Res 11:2579-2586 (1999).
Lay JJ, Modeling and optimization of anaerobic digested sludge converting stach to hydrogen. Biotechnol Bioeng 68:269-278 (2000).
Lee YE, Jain MK, Lee CY, Lowe SE and Zeikus JG, Taxonomic distinction of saccharolytic thermophilic anaerobes description of Thermoanaerobacterium xylanolyticum gen nov., sp. nov., and Thermoanaerobacterium saccharolyticum gen nov, sp. nov. reclassification of Thermoanaerobium brockii, Clostridium thermosulfurogenes, and Clostridium thermohydrosulfuricum E100-69 as Thermoanaerobacter brockii comb nov., Thermoanaerobacterium thermosulfurigenes comb nov, and Thermoanaerobacter thermohydrosulfuricus comb nov., respectively and transfer of Clostridium thermohydrosulfuricum 39e to Thermoanaerobacter ethanolicus. Int J Syst Bacteriol 43:41-51 (1993).
Lee YJ, Miyahara T and Noike T, Effect of iron concentration on hydrogen fermentation, Bioresour Technol 80:227-231 (2001).
Leschine Susan B, Cellulose degradation in anaerobic environments. Annu Rev Microbiol 49:399-426 (1995).
Li C and Fang HHP, Fermentative hydrogen production from wastewater and solid wastes by mixed cultures. Crit Rev Environ Sci Tech 37:1-39 (2007).
Liang TM, Cheng SS and Wu KL, Behavioral study on hydrogen fermentation reactor installed with silicone rubber membrane. Int J Hydrogen Energy 27:1157-1165 (2002).
Lin CY and Lay CH, Effects of carbonate and phosphate concentrations on hydrogen production using anaerobic sewage sludge microflora. Int J Hydrogen Energy 29:275-281 (2004).
Liou JSC, Balkwill DL, Drake GR and Tanner RS, Clostridium carboxidivorans sp. nov., a solvent-producing Clostridium isolated from an agricultural settling lagoon, and reclassification of the acetogen Clostridium scatologenes strain SL1 as Clostridium drakei sp. nov. Int J Syst Evol Microbiol 55:2085-2091 (2005).
Liu DW, Zeng RJ and Angelidaki I, Hydrogen and methane production from household solid waste in the two-stage fermentation process, Water Res 40:2230-2236 (2006).
Liu MQ and Liu GF, Expression of recombinant Bacillus licheniformis xylanase A in Pichia pastoris and xylooligosaccharides released from xylans by it. Protein ExperPurif 57:101-107 (2008).
Liu SY, Rainey FA, Morgan HW, Mayer F and Wiegel J, Thermoanaerobacterium aotearoense sp. nov., a slightly acidophilic, anaerobic thermophile isolated from various hot springs in New Zealand, and emendation of the genus Thermoanaerobacterium. Int J Syst Bacteriol 46:388-396 (1996).
Liu WT, Marsh TL, Cheng H and Forney LJ, Characteristion of microbial diversity by determining terminal restriction fragement length polymorphisms of genes encoding 16S rRNA. Appl Environ Microbiol 63:4516-4522 (1997).
Ljungdahl LG, The autotrophic pathway of acetate synthesis in acetogenic bacteria. Annu Rev Microbiol 40:415-450 (1986).
Loh WY, Identification of active contrasts in unreplicated factorial experiments. Compu Stat Data Analysis 14:135-148 (1992).
Lovitt RW, Shen GJ and Zeikus JG, Ethanol production by thermophilic bacteria: biochemical basis for ethanol and hydrogen tolerance in Clostridium thermohydrosulfuricum. J bacteriol 170:2809-2815 (1988).
Lynd LR, Weimer PJ, Zyl WHV and Pretorius I, Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506-577 (2002).
Lynd LR, Zyl WH van, McBride JE and Laser M, Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol 16:577-583 (2005).
Mandels M, Andreotti R and Roche C, Measurement of saccharifying cellulase. Biotechnol Bioeng 6:21-33 (1976).
McInerney MJ and Bryant MP, Anaerobic degradation of lactate by syntrophic associations of methanosarcina barkeri and Desulfovibrio Species and Effect of H2 on acetate degradation. Appl Environ Microbiol 41:346-354 (1981).
Méndez BS, Pettinari MJ, Ivanier SE, Ramos CA and Sineriz F, Clostridium thermopapyrolyticum sp. nov., a cellulolytic thermophile. Int J Syst Bacteriol 41:281-283 (1991).
Mergaert J, Lednicka D, Goris J, Cnockaert MC, Vos PD and Swings J, Taxonomic study of Cellvibrio strains and description of Cellvibrio ostraviensis sp. nov., Cellvibrio fibrivorans sp. nov. and Cellvibrio gandavensis sp. nov. Int J Syst Evol Microbio 53:465-471 (2003).
Miller DN, Bryant JE, Madsen EL and Ghiorse WC, Evaluation and optimatization of DNA extraction and purification procedures for soil and sediment samples. Appl Environ Microbiol 65:4715-5724 (1999).
Miron J and Forsberg C, Characterisation of cellulose-binding proteins that are involved in the adhesion mechanism of Fibrobacter intestinalis DR7. Appl Microbiol Biotechnol 51:491-497 (1999).
Miron J, Ben-Ghedalia D and Morrison M, Invited view: adhesion mechanisms of rumen cellulolytic bacteria. J Dairy Sci 84: 1294-1309 (2001).
Miyake J, The science of biohydrogen: an energetic view, in Biohydrogen, ed by Zaborsky OR, Plenum Press, New York, pp 7-18 (1998).
Mladenovska Z, Mathrani IM, Ahring BK, Isolation and characterization of Caldicellulosiruptor lactoaceticus sp. nov., an extremely thermophilic, cellulolytic anaerobic bacterium. Arch Microbiol 163:223-230 (1995).
Monserrate E, Leschine SB and Canale-Parola E, Clostridium hungatei sp. nov., a mesophilic, N2 fixing cellulolytic bacterium isolated from soil. Int J Syst Evol Microbiol 51:123-132 (2001).
Morrison M and Miron J, Adhesion to cellulose by Ruminococcus ablus: a combination of cellulosomes and Pil-proteins? FEMS Microbiol Lett 185:109-115 (2000).
Murphy JD and McCarthy K, The optimal production of biogas for use as a transport fuel in Ireland. Renew Energy 30:2111-2127 (2005).
Murray WD, Hofmann L, Campbell NL and Madden RH, Clostridium-lentocellum sp. nov., a cellulolytic species from river sediment containing paper-mill waste. Syst Appl Microbiol 8:181-184 (1986).
Nochur SV, Demain AL and Roberts MF. Carbohydrate utilization by Clostridium thermocellum: importance of internal pH in regulating growth. Enzyme Microb Technol 14:338-349 (1992).
Nogi Y, Takami H and Horikoshi K, Characterization of alkaliphilic Bacillus strains used in industry: proposal of five novel species. Int J Syst Evol Microbiol 55:2309-2315 (2005).
Noike T, Ko IB, Lee DY and Yokoyama S, Continuous hydrogen production from organic municipal wastes, Proc of 1st NRL International Workshop on Innovative Anaerobic Technology, Daejeon, Korea, 53-60 (2003).
Ohara H, Karita S, Kimura T, Sakka K and Ohmiya K, Characterization of the cellulolytic complex (cellulosome) from Ruminococcus albus. Biosci Biotechnol Biochem 64:254-260 (2000)
O-Thong S, Prasertsan P, Karakashev D and Angelidaki I, Thermophilic fermentative hydrogen production by the newly isolated Thermoanaerobacterium thermosaccharolyticum PSU-2. Int J Hydrogen Energy 33:1204-1214 (2008).
Owen WF, Stuckey DC, Herly JRJB, Young LY and McCarty PL, Bioassay for monitoring biochemical methane potential and anaerobic toxicity. Water Res 13:485-492 (1979).
Palop ML, Valles S, Pinaga F and Flors A, Isolation and characterization of an anaerobic, cellulolytic bacterium, Clostridium celerescens sp. nov. Int J Syst Bacteriol 39:68-71 (1989).
Pason P, Kyu KL and Ratanakhanokchai K, Paenibacillus curdlanolyticus strain B-6 xylanolytic-cellulolytic enzyme system that degrades insoluble polysaccharides. Appl Environ Microbiol 72:2483-2490 (2006).
Pason P, Kyu KL and Ratankhanokchai K, Paenibacillus curdlanolyticus strain B-6 xylanolytic-cellulolytic enzyme system that degrades insoluble polysaccharides. Appl Environ Microbiol 72:2483-2490 (2006).
Patel MA, Ou MS, Harbrucker R, Aldrich HC, Buszko ML, Ingram LO and Shanmugam KT, Isolation and characterization of acid-tolerant, thermophilic bacteria for effective fermentation of biomass-derived sugars to lactic acid. Appl Environ Microbiol 72:3228-3235 (2006).
Peguin S, Soucaille P, Momodulation of carbon and electron flow in Clostridium acetobutylicum by iron limitation and methyl viologen addition. Appl Environ Microbiol 61:403-405 (1995).
Pohlschröder M, Canale-Parola E, Leschine SB, Ultrastructural diversity of the cellulase complexes of Clostridium papyrosolvens C7. J Bacteriol 177:6625-6629 (1995).
Rachman MA, Nakashimada Y, Kakizono T and Nishio N, Hydrogen production with high yield and high evolution rate by self-flocculated cells of Enterobacter aerogenes in a packed-bed reactor. Appl Microbiol Biotechnol 49:450-454 (1998).
Rainey FA, Donnison AM, Janssen PH, Saul D, Rodrigo A, Bergquist PL, Daniel RM, Stackebrandt E and Morgan HW, Description of Caldicellulosiruptor saccharolyticus gen. nov., sp. nov.: an obligately anaerobic, extremely thermophilic, cellulolytic bacterium. FEMS Microbiol Lett 120:263-266 (1994).
Ren N, Wang B and Ma F, Hydrogen bio-production of carbohydrate fermentation by anaerobic sludge process, Proc of 68th Annual Water environmental Federal Conference, Miami (1995).
Rittmann BE and McCarty PL, Environmental biotechnology: principle and applications, international, edn 2001, McGraw-Hill, New York, pp 126-161, 569-627 (2001).
Rivas R, Garci-Fraile P, Mateos PF, Martinez-Molina E, and Velazquez E, Paenibacillus cellulosilyticus sp. nov., a cellulolytic and xylanolytic bacterium isolated from the bract phyllosphere of Phoenix dactylifera. Int J Syst Evol Microbiol 56:2777-2781 (2006).
Schrempf H and Walter S, The cellulolytic system of Streptomyces reticuli. Int J Biol Macromol 17:353-355 (1995).
Schwartz RD and Keller FA, Acetic acid production by Clostridium thermoacetium in pH-controlled batch fermentations at acidic pH, Appl Environ Microbiol 43:1385-1392 (1982).
Schwartz RD and Keller FA, Acetic acid production by Clostridium thermoacetium in pH-controlled batch fermentations at acidic pH. Appl Environ Microbiol 43:1385-1392 (1979).
Seifritz C, Fröstl JM, Drake HL and Daniel SL, Glycolate as a metabolic substrate for the acetogen Moorella thermoacetica. FEMS Microbiol Lett 170:399-405 (1999).
Semedo LT, Gomes RC, Linhares AA, Duarte GF, Nascimento RP, Rosado AS, Margis-Pinheiro M, Margis R, Silva KR, Alviano CS, Manfio GP, Soares RM, Linhares LF and Coelho RR, Streptomyces drozdowiczii sp. nov., a novel cellulolytic Streptomycete from soil in Brazil. Int J Syst Evol Microbiol 54:1323-1328 (2004).
Shen GJ, Annous BA, Lovitt RW, Jain MK and Zeikus JG, Biochemical route and control of butyrate synthesis in Butyribacterium methylotrophicum. Appl Microbiol Biotechnol 45:355-362 (1996).
Shi Y and Weimer PJ, Competition for cellobiose among three predominant ruminal cellulolytic bacteria under substrate-excess and substrate-limted conditions. Amer Socr Microbiol 63:743-748 (1997).
Shi Y, Odt CL and Weimer PJ, Competition for cellulose among three predominant ruminal cellulolytic bacteria under substrate-excess and substrate-limted conditions. Amer Soc Microbiol 63:734-742 (1997).
Sleat R and Mah RA, Clostridium-populeti sp. nov., a cellulolytic species from a woody-biomass digester. Int J System Bacteriol 35:160-163 (1985).
Storz G, Tartaglia LA, Farr SB and Ames BN, Bacterial defenses against oxidative stress. Trends Genet 6:363-368 (1979).
Taguchi F, Mizukami N, Saito-Takio T and Hasrgawa K, Hydrogen production from continuous fermentation of xylose during growth of Clostridium sp. strain No. 2. Can J Microbiol 41:536-540 (1995).
Takahata Y, Nishijima M, Hoaki T and Maruyama T, Thermotoga petrophila sp. nov. and Thermotoga naphthophila sp. nov., two hyperthermophilic bacteria from the Kubiki oil reservoir in Niigata, Japan. Int J Syst Evol Microbiol 51:1901-1909 (2001).
Tamaru Y, Ui S, Murashima K, Kosugi A, Chan H, Doi RH and Liu B, Formation of protoplasts from cultured tobacco cells and arabidopsis thaliana by the action of cellulosomes and pectate lyase from Clostridium cellulovorans. Appl Environ Microbiol 68:2614-2618 (2002).
Tanisho S, Kuromoto M and Kadokura N, Effect of CO2 removal on hydrogen production by fermentation. Int J Hydrogen Energy 23:559-563 (1998).
Tanisho S, Wakao N and Kosako Y, Biological hydrogen production by Enterobacter aerogenes. Int J Hydrogen Energy 16:29-530 (1983).
Terracciano JS, Schreurs WJA and Kashket ER, Membrance H+ conductance of Clostridium thermoaceticum and Clostridium thermoaceticum. Appl Environ Microbiol 53:782-786 (1987).
Thauer RK, Jungermann K and Decker K, Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100-180 (1977).
Tomme P, Warren RAJ and Gilkes NR, Cellulose hydrolysis by bacteria and fungi. Adv Microb Physiol 37:1-81(1995).
Ueno Y, Haruta S, Ishii M and Igarashi Y, Microbial community in anaerobic hydrogen-producing microflora enriched from sludge compost. Appl Microbiol Biotechnol 57:555-562 (2001).
Ueno Y, Sasaki D, Fukui H, Haruta S, Ishii M and Igarashi Y, Changes in bacterial community during fermentative hydrogen and acid production from organic waste by thermophilic anaerobic microflora. J Appl Microbiol 101:331-43 (2006).
Ueno YS, Otauka S and Morimoto M, Hydrogen production from industrial wastewater by anaerobic microflora in chemostat culture. J Ferment Bioeng 82:194-197 (1996).
Updegraff DM, Semimicro determination of cellulose in biological materials. Analytical Biochem 32:420-424 (1969).
Valdez-Vazquez I, Rios-Leal E, Esparza-Garcia F, Cecchi F and Poggi-Varaldo HM, Semi-continuous solid substrate anaerobic reactors for H2 production from organic waste: mesophilic versus thermophilic regime. Int J Hydrogen Energy 30:1383-1391 (2005).
Varel VH and Pond WG, Characteristics of a new cellulolytic Clostridium sp. isolated from pig intestinal tract. Appl Environ Microbiol 58:1645-1649 (1992).
Varel VH, Yen JT and Kreikemeier KK, Addition of cellulolytic clostridia to the bovine rumen and pig intestinal tract. Appl Environ Microbiol 61:1116-1119 (1995).
Wang G and Wang DIC, Elucidation of growth inhibition and acetic acid production by Clostridium thermoaceticum. Appl Environ Microbiol 47:294-298 (1984).
Wang YF, Cheng SS, Tseng IC, Bai MD and Hsiao CJ, Comparison of microbial diversity of hydrogen fermentation bioreactors degrading multiple substrates (glucose and peptone). Proc of IWA conference on Environmental Biotechnology (2003).
Warnick TA, Methe BA and Leschine SB, Clostridium phytofermentans sp. nov., a cellulolytic mesophile from forest soil. Int J System Evol Microbiol 52:1155-1160 (2002).
Warren RAJ, Microbial hydrolysis of polysaccharides. Annu Rev Microbiol 50:183-212 (1996).
Weber W and DiGiano, Process dynamics in environmental system, Wiley, New York, USA, pp 636 -655 (1996).
Weimer PJ, Why don’t ruminal bacteria digest cellulose faster? J Dairy Sci 79:1496-1502 (1996).
Wenzel M, Schonig I, Berchtold M, Kampfer P and Konig H, Aerobic and facultatively anaerobic cellulolytic bacteria from the gut of the termite Zootermopsis angusticollis. J Appl Microbiol 92:32-40 (2002).
Wood HG and Ljungdahl LG, Autotrophic character of acetogenic bacteria in Variations in Autotrophic Life, ed by Shively JM and Barton LL, Academic Press, San Diego, CA, pp 201-250 (1991).
Yang JC, Chynoweth DP, Williams DS and Li A, Clostridium aldrichii sp. nov., a cellulolytic mesophile inhabiting a wood-fermenting anaerobic digester. Int J Syst Bacteriol 40:268-272 (1990).
Yoda K, Toyoda K, Mukoyama Y, Nakamura Y and Minatio H, Cloning, sequencing, and expression of a Eubacterium cellulosolvens 5 gene encoding an endoglucanase (Cel5A) with novel carbohydrate-binding modules, and properties of Cel5A. Appl Environ Microbiol 71:5785-5793 (2005).
Yokoi H, Mori S, Hirose J, Hayashi S and Takasaki Y, H2 production from starch by a mixed culture of Clostridium butyricum and Rhodobacter sp. M-19. Biotechnol Lett 20:895-899 (1998).
Yokoi H, Ohkawa T, Hirosse J, Hayashi S and Takasaki Y, Characteristics of hydrogen production by acid uric Enterobacter aerogen strain HO-39, J Ferment Bioeng 80:571-574 (1995).
Yu HQ, Zhu ZH, Hu WR and Zhang HS, Hydrogen production from rice winery wastewater in an upflow anaerobic reactor by using mixed anaerobic cultures. Int J Hydrogen Energy 27:1359-1365 (2002).
Zhang T, Liu H and Fang HHP, Biohydrogen production from starch in wastewater under thermophilic condition. J Environ Manage 69:149-156 (2003).
Zverlov V, Mahr S, Riedel K and Bronnenmeier K, Properties and gene structure of a bifunctional cellulolytic enzyme (CelA) from the extreme thermophile Anaerocellum thermophilum with separate glycosyl hydrolase family 9 and 48 catalytic domains. Microbiology 144:457-465 (1998).
Zwietering MH, Jongenburger I, Rombouts FM and Van’t RK, Modeling of bacteria growth curve. Appl Environ Microbiol 56:1875-1881 (1990).
李東峰,上流式厭氧流體化床模廠處理對苯二甲酸製程廢水的程序控制及生物特性之研究,成功大學環境工程學系碩士論文(2000)。
李學霖,單醣與聚醣類混合蛋白腖基質於厭氧產氫程序分解機制之比較研究,成功大學環境工程學系碩士論文(2005)。
林佳弘,以中溫厭氧共消化下水道污泥與廚餘之研究,屏東科技大學環境工程與科學系碩士論文(2007)。
林建勝,以生質能源程序探討廚餘厭氧氫醱酵之研究,成功大學環境工程學系碩士論文(2007)。
施翠盈,本土性梭菌屬產氫菌株之分離與生理特性研究,國立成功大學生物學系碩士論文(2002)。
范文軒,有機廢棄物與豬糞尿污泥高溫厭氧共消化之研究,屏東科技大學環境工程學系碩士論文(2007)。
張仕旻,利用薄膜反應器於高溫厭氧產生物程序之研究,國立成功大學環境工程學系碩士論文(2001)。
陳文卿,台北市家戶廚餘厭氧醱酵示範系統建立及廚餘堆肥成品分析計畫成果報告,台北市環保局,台北(2006)。
陳文卿,台北市家戶廚餘厭氧醱酵示範系統建立及廚餘堆肥成品分析計畫期末報告,台北市環保局,台北(2005)。
郭世強,廚餘厭氧醱酵產氫程序之功能評估,成功大學環境工程學系碩士論文(2006)。
曾啟峰,薄膜生物反應器於高溫厭氧醱酵程序之應用,屏東科技大學環境工程與科學系碩士論文(2006)。
曾豐祥,纖維素分解產氫之微生物社會結構與動態變化,成功大學生命科學系碩士論文(2007)。
黃仁唏,廚餘回收再利用(二),行政院環保署中部辦公室,台中(2001)。
黃俊霖、陳晉照、林秋裕、劉文佐,以分子生物技術進行厭氧生物產氫菌群結構之研究,第25屆廢水處理研討會論文集(2000)。
黃基森,有機廢棄物堆肥化處理現況及政策,第一屆廢棄物清理實務研討會論文集,(1998)。
楊易霖,有機廢棄物之厭氧消化-前處理及溫度之影響,屏東科技大學環境工程學系碩士論文(2003)。
蔡宗岳,兩段式生物脫硝與硝化組合程序去除ABS製程廢水中有機物與含氮化合物之研究,成功大學環境工程學系碩士論文(1997)。
鄭凱尹,高溫厭氧消化廚餘之研究,屏東科技大學環境工程學系碩士論文(2001)。
蕭嘉瑢,複合基質厭氧氫發酵生物程序操控之功能評估及分生檢測生態之研究,成功大學環境工程學系碩士論文(2004)。
簡青紅,利用傳統培養方法和分子生物方法探討厭氧生物產氫反應槽的微生物社會結構,國立成功大學生物學系碩士論文(2003)。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊