跳到主要內容

臺灣博碩士論文加值系統

(18.205.192.201) 您好!臺灣時間:2021/08/05 02:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉怡君
研究生(外文):I-Chun Liu
論文名稱:Clostridiumtyrobutyricum在不同水力停留時間下之代謝表現與產氫行為之研究
論文名稱(外文):Metabolic study and hydrogen production of Clostridium tyrobutyricum under different hydraulic retention time
指導教授:黃良銘黃良銘引用關係
指導教授(外文):Liang-Ming Whang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:環境工程學系碩博士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:107
中文關鍵詞:水力停留時間生物產氫代謝CSTRClostridium tyrobutyricum
外文關鍵詞:Clostridium tyrobutyricumbio-hydrogenCSTRhydraulic retention timemetabolism
相關次數:
  • 被引用被引用:7
  • 點閱點閱:219
  • 評分評分:
  • 下載下載:48
  • 收藏至我的研究室書目清單書目收藏:0
本論文將 Clostridium tyrobutyricum 純菌植入連續流攪拌反應器 (Continuous-flow stirred tank reactor, CSTR),以 20,000 mg/L 葡萄糖及水解蛋白質 (3:2(w/w)) 作為進流基質,溫度控制於 35℃,所有試程的 pH 皆在 5.9-6.1 間,將反應槽操作在不同水力停留時間 (HRT = 18, 12, 8, 6, 4, 3, 2, 1.5, 1 hr,共 9 個試程),並收集穩定狀態下的氣體及水質數據,本論文的目的為探討 C. tyrobutyricum 在不同水力停留時間下之代謝表現及產氫行為的變化。
槽體內微生物濃度在前 8 個試程約維持在 2700±400 mg/L,直到水力停留時間 1 小時,槽體內微生物出現被洗出 (wash out) 的現象,故判定完成本株菌所有試程。在較低水力停留時間的試程 (HRT = 3, 2, 1.5 hr),微生物出現顆粒化現象,這個現象使得較低水力停留時間的試程微生物濃度有上升的趨勢,且使得出流水葡萄糖濃度可以維持 300 mg/L 以下。
出流水有機氮濃度隨水力停留時間減少而上升,而氨氮濃度隨水力停留時間減少而上升,顯示微生物在較高水力停留時間的試程中,有充足的時間進行反應,有利於水解蛋白質的降解作用;當反應槽操作在較高水力停留時間,水解蛋白質可被利用於發酵作用及進行生物體合成,隨著水力停留時間下降,水解蛋白質的作用主要為生物質體合成,或仍以有機氮的型式存在,只有少部分被代謝至氨氮型式。
C. tyrobutyricum 的產氫速率、比產氫速率與氫氣產率都是在水力停留時間 4 小時的試程出現最大值,分別為 416.61 mmol H2/L/d、8.92 L H2/g-VSS/d 及 3.47 mmol H2/g-CODapplied,而本試程也是實際產氫量最接近理論產氫量的試程;產二氧化碳速率則是在水力停留時間 6 小時的試程出現最大值,約為 292 mmol CO2/L-day。
在水力停留時間較低的試程,產氫速率下降,但微生物濃度並沒有明顯的變化,推測產氫速率下降是由於微生物代謝路徑移轉的關係,在較高水力停留時間的試程,出流水有機酸組成以丁酸及乙酸為主,在較低水力停留時間的試程則轉為乳酸生成為主。文獻指出,LDH 會被高 NADH/NAD+ 而激活,誘使乳酸的生成 (Garrigues et al., 1997),此外,LDH 的活性會被 NAD+ 抑制 (Fitzgerald et al.,1992)。故推測在低水力停留時間的操作下,微生物的比生長速率 (specific growth rate, μ) 提高,所需要的能量較多,使得體內 NADH 被快速產生,另一方面,往丁酸生成的代謝減少,推測是因為 PTB 的活性不佳;以上兩個因素造成微生物細胞內的 NADH 和丙酮酸的累積,使得 LDH 的活性增加,開始進行產乳酸的代謝路徑。
使用 CellNetAnalyzer 做代謝路徑的速率計算後,在 pyruvate 節點分析方面,製造 acetyl-CoA 並伴隨氫氣產生的路徑,隨著水力停留時間的降低而降低;往製造乳酸的路徑,隨著水力停留時間的降低而有很明顯的上升趨勢,判斷應該是 LDH 在低水力停留時間被活化所導致。從 acetyl-CoA 節點分析可以看出,在水力停留時間較高時,C. tyrobutyricum 控制丁酸生成的酵素群 (PTB及BK) 比控制乙酸生成的酵素群 (PTA及AK) 活性還高;當水力停留時間較低時則相反。
The objective of this thesis was to figure out the metabolism of Clostridium tyrobutyricum and evaluate the production of hydrogen in a continuous-flow stirred tank reactor (CSTR) as a function of hydraulic retention time (HRT). The influent substrates were 20,000 mg/L glucose and peptone (3:2(w/w)), temperature was at 35℃, and pH was controlled under 6±0.1 by computer. The reactor was operated at different hydraulic retention time (HRT = 18, 12, 8, 6, 4, 3, 2, 1.5, 1 hr), and collected gas production and water quality data under steady state for the nine runs.
The concentrations of biomass were around 2700±400 mg/L at HRT = 18-1.5 hrs, but C. tyrobutyricum was washed out at HRT = 1hr. Bacterial flocculation was occurred at HRT = 3, 2, 1.5 hrs. Biomass flocculation increased biomass concentrations and made concentrations of effluent glucose stay under 300 mg/L at lower HRTs.
Effluent organic nitrogen concentrations increased but effluent ammonia concentration decreased with decreasing HRT, because microorganism had enough time for degrading peptone when HRT was high. While the reactor was controlled at higher HRTs, peptone was used for biomass synthesis and fermentation. On the other hand, peptone was used for biomass synthesis mainly at lower HRTs.
Maximum hydrogen production rate, maximum specific hydrogen production rate and maximum hydrogen yield were 416.61 mmol H2/L/d, 8.92 L H2/g-VSS/d, and 3.47 mmol H2/g-CODapplied occurred at HRT = 4 hr. Moreover, experimental hydrogen production rate of HRT = 4 hr was also closest to theoretical hydrogen production rate among all the nine runs. Maximum carbon dioxide production rate was 292 mmol CO2/L-day occurred at HRT = 6 hr.
In addition, hydrogen production rate decreased when HRTs were reduced lower than 4 hr, but biomass concentrations were stable, so decreased hydrogen production rates were attributed to metabolic pathway shifting. The compositions of effluent organic acids were mainly butyrate and acetate at higher HRTs, but metabolic pathway shifted to lactate production at lower HRTs. LDH will be catalyzed by high NADH/NAD+ condition (Garrigues et al., 1997), and inhibited by NAD+ (Fitzgerald et al., 1992). When the reactor was controlled at lower HRTs, specific growth rates of microorganism were increased, and then required energy of microorganism was high, so NADH was produced faster. In addition, effluent butyrate concentrations decreased, maybe because of lower PTB activity. These two reasons caused accumulation of NADH and pyruvate in microorganism, LDH was activated, and then lactate was produced at lower HRTs.
Finally, metabolic flux analysis was studied. After using CellNetAnalyzer calculated the rates of metabolic pathways for eight runs, nodal analysis was applied. For nodal analysis of pyruvate, the pathway for producing acetyl-CoA with hydrogen production decreased when HRT decreased. On the other hand, the pathway for lactate production increased when HRT decreased, maybe because of high LDH activity. For nodal analysis of acetyl-CoA, the activities of PTB and PK were higher than PTA and AK, and vice versa.
考試合格證明I
中文摘要II
英文摘要IV
致謝VI
目錄VIII
圖目錄XI
表目錄XIV

第一章 前言 1

第二章 文獻回顧 5
2-1 生物產氫程序的種類與發展 5
2-2 厭氧發酵產氫微生物 7
2-2-1 Clostridium 與其 hydrogenase 8
2-3 厭氧微生物產氫之機制 13
2-3-1 碳水化合物厭氧發酵代謝機制 13
2-3-2 含氮物質厭氧發酵代謝途徑 22
2-3-3 複合基質厭氧發酵 27
2-4 厭氧氫發酵的環境影響因子 28
2-5 C. tyrobutyricum 相關研究 35
2-6 CellNetAnalyzer 原理 38

第三章 實驗設備與方法 39
3-1 厭氧生物氫氣產能試驗(Biochemical Hydrogen potential test, BHP test) 39
3-1-1 反應槽啟動前基質之製備 39
3-1-2 反應槽啟動前營養鹽之製備 39
3-1-3 植種純菌製備 41
3-2 Clostridium tyrobutyricum 厭氧產氫純菌連續流反應槽 42
3-2-1 反應槽內純菌之培養 42
3-2-2 純菌反應槽進出流的啟動 42
3-3 水質分析項目與使用儀器 44
3-3-1 一般水質分析項目 44
3-3-2 碳水化合物 44
3-3-3 氣體組成 45
3-3-4 有機酸組成 45
3-3-5 醇類分析 45

第四章 結果與討論 47
4-1 Clostridium tyrobutyricum 純菌氫發酵槽之啟動與試程 47
4-2 C. tyrobutyricum 於各 HRT 下的表現 48
4-2-1 水力停留時間 18 小時 48
4-2-2 水力停留時間 12 小時 48
4-2-3 水力停留時間 8 小時 51
4-2-4 水力停留時間 6 小時 51
4-2-5 水力停留時間 4 小時 54
4-2-6 水力停留時間 3 小時 54
4-2-7 水力停留時間 2 小時 57
4-2-8 水力停留時間 1.5 小時 57
4-2-9 水力停留時間 1 小時 58
4-3 C. tyrobutyricum 在不同水力停留時間下表現之比較 61
4-3-1 揮發性懸浮固體物 (VSS) 64
4-3-2 氣體生成表現 65
4-3-3 殘留葡萄糖濃度 65
4-3-4 水解蛋白質轉化情形 67
4-3-5 有機酸與醇類 69
4-4 稀釋率對於 C. tyrobutyricum 的表現之影響 72
4-5 有機負荷對於 C. tyrobutyricum 產氫行為之影響 79
4-6 C. tyrobutyricum 複合基質發酵產物與氫氣生成之關係 81
4-7 利用CellNetAnalyzer 分析 C. tyrobutyricum 代謝路徑之速率 83
4-7-1 C. tyrobutyricum 的代謝路徑 83
4-7-2 CellNetAnalyzer 分析結果 85
4-7-3 節點分析(nodal analysis) 88

第五章 結論與建議 91
5-1 結論 91
5-2 建議 93

第六章 參考文獻 95

自述 107
白明德、鄭幸雄、趙禹杰、蕭嘉瑢、楊雅斐 (2002) 厭氧氫發酵程序中氫分壓的影響與重要性,第27屆廢水研討會論文集。
任維傑 (2006) 探討厭氧產氫純菌Clostridium在不同pH 下之反應動力機制,國立成功大學環境工程學系碩士論文。
林佩瑩、吳怡儒、任維傑、李學霖、黃良銘 (2004) Clostridium屬菌株生物產氫:代謝途徑與數學模式模擬研究,第29屆廢水研討會論文集。
梁德明、鄭幸雄、吳坤龍 (2002) Behavior of gas separation for submersed hollow fibers installed in an anaerobic hydrogen fermentor,第27屆廢水研討會論文集。
張仕旻、鄭幸雄 (2001) 利用薄膜反應器於高溫厭氧產氫生物程序之研究,國立成功大學環境工程學系碩士論文。
趙禹杰、鄭幸雄 (2004) 澱粉及蛋白腖複合基質厭氧發酵程序之功能評估,國立成功大學環境工程學系碩士論文。
鄭幸雄、白明德、蔡遠瑋、王永福、蕭嘉瑢 (2003a) 厭氧產氫菌分解蛋白質之機制探討,第 28 屆廢水研討會論文集。
鄭幸雄、白明德、趙禹杰 (2003b) 厭氧產氫菌分解高分子碳水化合物及peptone 之產氫機制,第28 屆廢水研討會論文集。
鄭幸雄、林秋裕、曾怡禎、李季眉、林信一、林明瑞、陳幸德 (2003c) 複合基質生物產氫機制及程序應用之整合研究-2002 年,第28 屆廢水研討會論文集。
蕭景庭、李季眉、董昀昌 (2000) 不同產氫光合作用細菌之最佳產氫條件研究, 338-344。
蕭嘉瑢、鄭幸雄 (2004) 複合基質厭氧產氫發酵生物程序操控之功能評估及分生檢測生態之研究,國立成功大學環境工程學系碩士論文。
Adams M. W. W., and E. I. Stiefel. 1998. Biological hydrogen production: not so elementary. Science. 282: 1842-1843.
Allison, C. and G.T. MacFarlane. 1990. Regulation of protease production in Clostridium sporogenes. Appl. Environ. Microbiol. 56:3485-3490.
Andel, J. G., G. R. Zoutberg, P. M. Crabbendam, and A. M. Breure. 1985. Glucose fermentation by Clostridium butyricum growth under a self generated gas atmosphere in chemostat culture. Appl. Microbiol. Biotechnol. 23: 21-26.
Andreesen J. R., H. Bahl, and G. Gottschalk. 1989. Introduction to the physiology and biochemistry of genus Clostridium. In: Clostridia, Minton N. P. and Clark J. D. (ed.) Plenum Press. New York. pp. 27-62.
Angenent, L. T., Karim, K., Al-Dahhan, M. H., Wrenn, B. A., and Domiguez-Espinosa, R. 2004. Production of bioenergy and biochemicals from industrial and agricultural wastewater. Trends in Biotechnology, 22(9), 477-485.
Bai, M. D., S. S. Cheng, and I. C. Tseng. 2001. Biohydrogen produced due to peptone degradation by pretreated seed sludge. 2001 ASIAN WATERQUAL, IWA Asia-Pacific Regional Conference, Fukuoka, Japan.1, pp. 315-320.
Bai, M. D., S. S. Cheng, Y.F. Wang, and C.J. Hsiao. 2003. Effects of hydraulic retention time on hydrogen fermentation on multiple substrates. 2003 ASIAN WATERQUAL, IWA Asia-Pacific Regional Conference, October, Bangkok, Thailand. pp. 19-23
Baldwin, R. L. and Milligan, L. P. 1964. Electron transport in Peptostreptococuss elsdenii. Biochim. Biophys. Acta. 92: 421-432.
Baronofsky, J. J., Schreus, W. J. A. and Kashket, E. R. 1984. Uncoupling by acetic acids limits growth of and acetogenisis by Clostridum thermoaceticum. Appl. Environ. Microbial. 48: 1134-1139.
Brosseau, J. D., and J. E. Zajic. 1982. Hydrogen-gas production with Citrobacter intermedius and Clostridium pasteurianum. Journal Chemical Technology and Biotechnology. 32: 496-502.
Buchanan, B. B. and Arnon, D. I. 1970. Ferredoxins:chemistry and function in photosynthesis, nitrogen fixation and fermentative metabolism. Adv. Enzymol. 33: 119-176.
Çakır, T., Arga, K. Y., Altınta, M. M., and Ülgen, K. Ö. 2004. Flux analysis of recombinant Saccharomyces cerevisiae YPB-G utilizing starch for optimal ethanol production. Process Biochemistry, 39(12): 2097-2108.
Chen, C. C., and Lin, C. Y. 2001. Start-up of Anaerobic Hydrogen Producing Reactors Seeded with Sewage Sludge. Acta Biotechnologica 21(4): 371-379.
Chen, W. M., Tseng, Z. J., Lee, K. S. and Chang, J. S. 2005. Fermentation hydrogen production with Clostridum butyricum CGS5 isolation from anaerobic sewage sludge. Int. J. Hydrogen Energy. 30: 1063-1070.
Cheng, S. S., I. C. Tseng., and M. D. Bai. 1990. Behavior study of anaerobic hydrogenation from different organic substrates with selected hydrogen production bacteria. Proc. of the 7th IWA Asic-Pacific Regional Conference, Taipei, Taiwan. 1, pp. 759-764.
Crabbendam, P. M., Neijssel, O. M. and Tempest, D. W. 1985. Metabolic and energetic aspects the growth of Clostridum butyricum on glucose in chemostat culture. Arch. Microbiol. 142: 375-382.
Dabrock, B., H. Bahl, and G. Gottschalk. 1992. Parameters affecting solvent production by Clostridium pasteuriamun. Appl. Environ. Microbiol. 58: 1233-1239.
Das, D., and T. N. Veziroglu. 2001. Hydrogen production by biological processes: a survey of literature. Int. J. Hydrogen Energy. 26: 13-28.
Ezeji, T. C., Qureshi, N. and Blaschek, H. P. 2004. Acetone butanol ethanol (ABE) production from concentrated substrate:reduction in substrate inhibition by fed-batch technique and product inhibition by gas stripping. Appl. Microbiol. Biotechnol. 63 (6): 653-658.
Fabiano, B., and P. Perego. 2002. Thermodynamic study and optimization of hydrogen production by Enterobacter aerogenes. Int. J. Hydrogen Energy. 27: 149-156.
Fan, K.-S., Kan, N.-r., & Lay, J.-j. 2006. Effect of hydraulic retention time on anaerobic hydrogenesis in CSTR. Bioresource Technology 97(1): 84-89.
Fang, H. P. and Liu H. 2002. Effect of pH on hydrogen production from glucose by mixed culture. Bioresour. Technol. 82: 87-93.
Fang, H. H. P., H. Liu, and T. Zhang. 2002a. Characterization of a hydrogen-producing granular sludge. Biotechnol Bioeng. 78: 44-52.
Fang, H. H. P., T. Zhang, and H. Liu. 2002b. Miccrobial diversity of a mesophilic hydrogen-producing sludge. Appl. Microbiol. Biotechnol. 58: 112-118.
Fitzgerald, R.J., Doonan, S., Mckay, L.L., and Cogan, T.M. 1992. Intracellular pH and the role of d-lactate dehydrogenase in the production of metabolic end products by Leuconostoc lactis. J. Dairy Res. 59: 359-367.
Fumiaki, T., J. D. Chang, N. Mizukami, S. T. Tatsuo, and H. Katsushige. 1993. Isolation of a hydrogen-producing bacterium Clostridium beijerinckii strain AM21B, from termites. Can. J. Microbiol. 39: 726-730.
Garrigues, C., Loubiere, P., Lindley, N.D., and Cocaign-Bousquet, M. 1997. Control of the shift from homolactic acid to mixed-acid fermentation in Lactococcus lactis: predominant role of the NADH/NAD+ ratio. J. Bacteriol. 179: 5282–5287.
Girbal, L., C. Croux, I. Vasconcelos, P. Soucaille. 1997. Regulation of metabolic shifts in Clostridium acetobutylicum ATCC 824. FEMS Microbiology Reviews 17: 287 -297.
Girbal, L. and Soucaille, P. 1998. Regulation of solvent production in Clostridum acetobutylicum. Tibtech. 16: 11-16.
Gibson, A. M., R. C. L. Ellis-Brownlee, M. E. Cahill, E. A. Szabo, G. C. Fletcher and P. J. Bremer. 2000. The effect of 100% CO2 on the growth of nonproteolytic Clostridium botulinum at chill temperature. Int. J. Food Microbiol. 54: 39-48.
Gottschalk, G. 1985. Bacterial Metabolism 2nd. Springer-Verlag New York Inc.
Herbert, D., Philipps, P. J. and Strange, R. E. 1971. Carbonhydrate analysis. Methods Enzymol. 5B: 265-277.
Herrero, A. A., Gomez, R. F., Snedecor, B., Tolman, C. J. and Roberts , M. F. 1985. Growth inhibition of Clostridium thermocellum by carboxylic acids:a mechanism based on uncoupling by weak acods. Appl. Microbiol. Biotechnol. 22: 53-62.
Heyndrickx, M., Vansteenbeeck, A., De Vos, P. and De Ley, J. 1986. Hydrogen gas production from continuous fermentation of glucose in a minimal medium with Clostridum butyricum LMG 1213t1. System. Appl. Mircobiol. 8: 239-244.
Heyndrickx, M., De Vos, P., Thibau, B., Steven, P. and De Ley, J. 1987. Effect of various external factors on the fermentative production of hydrogen gas from glucose by Clostridum butyricum strains in batch culture. System. Appl. Mircobiol. 9: 163-168.
Heyndrickx, M., De Vos, P. and De Ley, J. 1990. H2 production from chemostat fermentation glucose by Clostridum butyricum and Clostridum pasteurinum in ammonium and phosphate limitation. Biotechnol. Lett. 12: 731-736.
Heyndrickx, M., De Vos, P., and De Ley, J. 1991. Fermentation characteristics of Clostridium pasteurianum LMG 3285 grown on glucose and mannitol. J. Appl. Bacteriol. 70: 3233-3241.
Hippe, H., J. R. Andreesen, and G. Gottschalk. 1991. The genera Clostridium. In: Albert, B., G. T. Hans, D. Martin, H. Wim, and K. Karl-Heinz (eds.), The prokaryotes. Vol II. Springer-Verlag, New York. pp. 1800-1978.
Jones, M. V. 1989. Modified atmospheres. In: Mechanisms of action of food preservation procedures. Gould, G. W., ( Ed.), Elsevier Applied Science, Essex, England. pp. 247-284.
Kalia, V. C., S. R. Jain, A. Kumar, and A. P. Joshi. 1994. Fermentationof bio-waste to H2 by Bacillus lichenoformis. World J. Microbiol. Biotechnol. 10: 224-227.
Kataoka, N., A. Miya., and K. Kiriyama. 1997. Studies on hydrogen production by continuous culture system of hydrogen producing anaerobic bacteria. Proc. of the 8th International Conference on anaerobic digestion, 2: 383-390.
Kell, D. B., Peck, M. W., Rodger, G. and Morris, J. G. 1981. On the permeability to weak acids and bases of the cytoplasmic membrane of Clostridium pasteurianum. Biochem. Biophhys. Res. Commun. 99: 81-88.
Khanal, S. K., Chen, W.-H., Li, L., and Sung, S. 2004. Biological hydrogen production: effects of pH and intermediate products. International Journal of Hydrogen Energy 29(11): 1123-1131.
Kim, D.-H., Han, S.-K., Kim, S.-H., and Shin, H.-S. 2006. Effect of gas sparging on continuous fermentative hydrogen production. International Journal of Hydrogen Energy. 31(15): 2158-2169.
Kumar, N and D. Das. 2000. Production and purification of alpha-amylase from hydrogen-producing Enterobacter cloacae IIT-BT 08. Bioprocess Eng. 23: 205-208.
Hüsemann, M. H. W. and Papoutsakis, E. T. 1987. Solventogenesis in Clostridum acetobutylicum fermentations related to carboxylic acid and proton concentrations. Biotechnol. Bioeng. 32 (7): 843-852.
Hüsemann, M. H. W. and Papoutsakis, E. T. 1989. Comparison between in vivo and in vitro enzyme activities in continuous and batch fermentations of Clostridum acetobutylicum. Appl. Microbiol. Biotechnol. 30: 585-595.
Lambert, A. L., J. P. Smith and K. L. Dodds. 1991. Shelf life extension and microbiological safety of fresh meat: A review. Food Microbiol. 8: 267-297.
Lay, J. J. 2000. Modeling and optimization of anaerobic digested sludge converting stach to hydrogen. Biotechnol Bioeng. 68: 269-278.
Lay, J. J. 2001. Biohydrogen generation by mesophilic anaerobic fermentation of microcrystalline cellulose. Biotechnol and Bioeng. 74(4): 280-287.
Lee, Y. J., T. Miyahara, and T. Noike. 2001. Effect of iron concentration on hydrogen fermentation. Bioresour Technol. 80: 227-231.
Lin, C. Y. and R. C. Chang. 1990. Hydrogen production during the anaerobic acidogenic conversion of glucose. J. Chem. Technol. Biotechnol. 76: 498-500.
Lin, C. Y. and C. H. Lay. 2004. Carbon/nitrogen-ratio effect on fermentative hydrogen production by mixed microflora. International Journal of Hydrogen Energy. 29: 41-45
Lovitt, R. W., G. J. Shen, and J. G. Zeikus. 1998. Ethanol production by thermophilic bacteria: biochemical basis for ethanol and hydrogen tolerance in Clostridium thermohydrosulfuricum. J. Bacteriol. 170: 2809-2815.
Macfarlane, S., and Macfarlane, G. T. 2003. Regulation of short-chain fatty acid production. Proceedings of the Nutrition Society, 62(01): 67-72.
McCarty, P. L. 1964. Anaerobic Waste Treatment Fundamentals III. Public Works. 95: 91.
McInerney, M. J. 1988. Anaerobic hydrolysis and fermentation of fats and proteins. In: Biology of anaerobic microorganisms, Zehnder, A.J.B. (ed.), New York: Wiley.
Mead, G. C. 1971. The amino acid-fermenting clostridia. J. Gen. Microbiol. 67: 47-56.
Michel-Savin, D., Marchal, R. and Vandecasteele, J. P. 1990. Butyrate production in continuous culture of Clostridum tyrobutyricum: effect of end-product inhibition. Appl. Microbiol. Biotechnol. 33: 127-131.
Miyake, J. 1998. Biohydrogen. Zaborsky et al. (eds), Plenum Press, New York.
Mizuno, O., Dinsdale, R., Hawkes, F. R., Hawkes, D. L. and Noike, T. 2000. Enhancement of hydrogen production from glucose by nitrogen gas sparging. Bioresour. Technol. 73: 59-65.
Neidhardt, F. C., Ingraham, J. L., and Schaechter, M. 1990. Physiology of the Bacterial Cell: A Molecular Approach: Sunderland, Mass.(EUA). Sinauer Associates.
Niel, E. W., Claassen, P. A. M. and Stams, A. J. M. 2003. Substrate and product inhibition of hydrogen production by extreme thermophile, Caldicellulosiruptor saccharolyticus. Biotechnol. Bioeng. 81: 255-262.
Onodera, H., T. Miyahara, and T. Nokie. 1999. Influence of ammonia concentration on hydrogen transformation of sucrose. Proc. of 7th IWQA. pp. 1139-1144.
Owen, W. F., Stuckey, D. C., Jr., Herly, J. B., Young, L. Y. and MaCarty P. L. 1979. Bioassay for monitoring biochemical methane potential and aanaerobic toxicity. Wat. Res. 13: 485-492.
Payne, M.J., A. Chapman, and R. Cammack. 1993. Evidence for an [Fe]-type hydrogenase in the parasitic protozoan Trichomonas vaginalis. FEBS Lett. 317: 101-104.
Rachman, M. A., Y. Nakashimada, T. Kakizono, and N. Nishio. 1998. Hydrogen production with high yield and high evolution rate by self-flocculated cells of Enterobacter aerogenes in a packed-bed reactor. Appl. Microbiol. Biotechnol. 49: 450-454.
Ramsay, I. R., and Pullammanappallil, P. C. 2001. Protein degradation during anaerobic wastewater treatment: derivation of stoichiometry. Biodegradation. 12(4): 247-256.
Schwartz, R. D. and Keller F. A. 1982. Acetic acid production by Clostridium themoacetium in pH-controlled batch fermentations at acidic pH. Appl. Environ. Microbiol. 43: 1385-1392.
Sridhar, J., and Eiteman M. A. 2001. Metabolic flux analysis of Clostridium thermosuccinogenes. Applied Biochemistry and Biotechnology, 94(1): 51-69.
Taguchi, F., Chang, J. D., Mizukami, N., Saito-Taki, T. and Hasegawa, K. 1993. Isolation of a hydrogen-producing bacterium, Clostridum beijerinckii strain AM21B from termites. Can. J. Microbiol. 39: 726-730.
Taguchi, F., N. Mizukami, T. Saito-Takio, and K. Hasrgawa. 1995. Hydrogen production from continuous fermentation of xylose during growth of Clostridium sp. strain No 2. Canadian Journal of Microbiology. 41: 536-540.
Tanisho, S., N. Kamiya, and N. Wakao. 1989. Hydrogen evolution of Enterobacter aerogen depending on culture pH: mechanism of hydrogen evolution from NADH by means of membrane-bound hydrogenase. Biochimica. et. Biophysica. Acta. 973: 1-6.
Tanisho, S., and Y. Ishiwata. 1994. Continuous hydrogen production from molasses by the bacterium Enterobacter aerogen. Int. J. Hydrogen Energy. 19: 807-812.
Tanisho, S., M. Kuromoto, and N. Kadokura. 1998. Effect of CO2 removal on hydrogen production by fermentation. Int. J. Hydrogen Energy. 23: 559-563.
Terracciano, J. S., W. J. A. Schreurs, and E. R. Kashket. 1987. Membrance H+ conductance of Clostridium thermoaceticum and Clostridium acetobutylicum: evidence for electrogenic Na+/H+ antiport in Clostridium thermoaceticum. Appl. Environ. Microbiol. 53: 782-786.
Thauer, R. K., Jungermann, K., and Decker, K. 1977. Energy conservation in chemotrophic anaerobes. Bacteriol. Rev. 41: 100-180.
Ueno, Y., Kawai, T., Sato, S., Otsuka, S. and Morimoto, M. 1995. Biological production of hydrogen from cellulose by natural anaerobic microflora. J. Ferment. Bioeng. 79: 395-397.
Ueno, Y., S. Haruta, M. Ishii, and Y. Igarashi. 2001. Microbial community in anaerobic hydrogen-producing microflora enriched from sludge compost. Appl. Microbiol. Biotechnol. 57: 555-562.
Van Andel, J. G., Zoutberg, G. R., Crabbendam, P. M. and Breure, A. M. 1985. Glucose fermentations by Clostridium butyricum grown under a self generated gas atmosphere in chemostat culture. Appl. Environ. Biotechnol. 23: 21-26.
Van Ginkel, S. and Logan, B. 2005. Inhibition of biohydrogen production by undissociated acetic and butyric acids. Erviron. Sci. Technol. 39: 9351-9356.
Van Ginkel, S. and Logan, B. 2005a. Increased biological hydrogen production with reduced organic loading. Water Res. 39: 3819-3826.
Vasconcelos, I., L. Girbal, and P. Soucaille. 1994. Regulation of carbon and electron flow in Clostridium acetobutylicum grown in chemostat culture at neutral pH on mixtures of glucose and glycerol. J. Bacteriol. 176: 1443-1450.
Wang, G. and D. I. C. Wang. 1984. Elucidation of growth inhibition and acetic acid production by Clostridium thermoaceticum. Appl. Environ. Microbiol. 47: 294-298.
Wongtanet, J., Sang, B.-I., Lee, S.-M., and Pak, D. 2007. Biohydrogen production by fermentative process in continuous stirred-tank reactor. International Journal of Green Energy, 4(4): 385-395.
Yokoi, H., S. Mori, J. Hirose, S. Hayashi, and Y. Takasaki. 1998. H2 production from starch by a mixed culture of Clostridium butyricum and Rhodobacter sp. M-19. Biotechnol. Lett. 20: 895-899.
Zheng, X. J. and Yu, H. Q. 2004. Roles of pH in biologic production of hydrogen and volatile fatty acids from glucose by enriched anaerobic cultures. Appl. Biochem. Biotechnol. 112: 79-90.
Zhu, Y., and Yang, S.-T. 2004. Effect of pH on metabolic pathway shift in fermentation of xylose by Clostridium tyrobutyricum. Journal of Biotechnology. 110(2): 143-157.
Zoetemeyer, R. J., Matthijse, A. J. C. M., Cohen, A. and Boelhouwer, C. 1982. Product inhibition in the acid forming stage of the anaerobic digestion process. Water Res. 16: 633-639.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top