跳到主要內容

臺灣博碩士論文加值系統

(3.236.50.201) 您好!臺灣時間:2021/08/05 18:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林煇翔
研究生(外文):Hui-Hsiang Lin
論文名稱:建立、模擬及評估以稻桿做為基質的生物產氫程序
論文名稱(外文):Establishing, modeling and assessment of bio-hydrogen production process by using rice straw as substrate
指導教授:福島康裕
指導教授(外文):Yasuhiro Fukushima
學位類別:碩士
校院名稱:國立成功大學
系所名稱:環境工程學系碩博士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:80
外文關鍵詞:fermentationCO2powerfuel cellhydrolysispretreatmenthydrogencellulose
相關次數:
  • 被引用被引用:0
  • 點閱點閱:223
  • 評分評分:
  • 下載下載:53
  • 收藏至我的研究室書目清單書目收藏:0
隨著時代及文明的進步,石化能源的大量消耗所帶來的溫室效應衝擊,近幾年來已經變成國際上重視的環境議題之一。再生能源的利用與其技術的發展也因此日益精進,氫氣(H2)是再生能源中具有高度發展性的能源之一,主要是由於它的能量密度極高且利用時不會排放溫室效應氣體。目前主要製造氫氣的方法有蒸氣重組法(steam reforming)、水煤氣法(coal gasification)及電解法(water splitting by electrolysis)等等,但是利用這些方法來製造氫氣的過程中都會使用到石化能源,所以近年來開始發展利用微生物的代謝機制來將生質體轉化成氫氣,也就是所謂的生質能源的一種。
在臺灣每年都有相當大量的農業廢棄物產生,其中稻桿的產量之多,但大部分廢棄稻桿都直接在稻田中就地焚化,雖然可以因此減少廢棄稻桿的體積,可是所產生的溫室氣體及懸浮微粒等,皆會對環境造成衝擊,如果可以利用微生物的代謝將廢棄稻桿轉換成具有附加價值的氫氣,將會是一具有發展潛力的廢棄物處理方式。
木質纖維素(lignocellulose)是植物體中主要的成分,其中包含纖維素(cellulose)、半纖維素(hemicellulose)及木質素(lignin)三種,其比例則因不同的植物而有差異。目前利用微生物產氫的研究主要都以研究室規模的實驗為主,大部分使用的基質為葡萄糖及澱粉。目前在生物產氫的研究中,幾乎沒有文獻及研究資料是關於直接利用生質體(有機體)來產生氫氣,但是在製造生質酒精的研究中,已經有一套利用生質體(有機體)來產生酒精的程序。經發現,我們可以利用生質酒精製造程序中的前處理(pretreatment)及水解(hydrolysis)程序來得到植物體中的葡萄糖,進而參考目前生物利用葡萄糖發酵產氫的研究,來達到並建立一個完整的可利用植物體來生產氫氣的程序。將所建立的生物產清程序與直接燃燒發電的方式做比較,可以得到若此生物產氫程序實廠化後之概略成效。
經由假設後的案例分析可知,若要產生相同的發電量,則直接燃燒的發電效率皆較生物產氫程序為低;若要使生物產氫程序達到一目標發電量,增加氫氣產率及(燃料電池)發電效率將是程序中兩個主要的影響因子;兩種程序的二氧化碳直接排放量以直接燃燒發電的方式較多。在生物產氫程序的二氧化碳分析中可知,運送稻桿至系統時的二氧化碳排放量比稻桿在程序中產氫發電時的量少相當多;以2006年來看,將所有的稻桿(1.6百萬噸)都經由這套生物產氫發電程序來發電,可以使再生能源佔總能源的比例由3.517%增加為3.549%。
Hydrogen is being projected as a potential energy carrier of the future. Conventionally, hydrogen is produced from natural gas by steam reforming. Other industrial methods currently being applied are coal gasification and water electrolysis. Common shortcoming of those conventional methods is the associated consumption of non-renewable energy resources. To realize sustainable energy system using hydrogen, it is necessary to explore renewable hydrogen sources such as biomass.
In Taiwan, one of the most abundant and unutilized biomass is agricultural waste, including rice straw. For example, 1.6 million tons of rice straw is burnt in the field in Taiwan (2006). As a result, a lot of air pollutants are emitted and deteriorating air quality as well as causing climate change without utilizing its inherent energy. If we could use rice straw as substrate to generate hydrogen instead of burning in the field, above mentioned problems could be alleviated. However, conversion of cellulosic materials such as rice straw into hydrogen entails additional input of energy and ancillary materials. To choose the most sustainable technology among numerous candidates vigorously being developed, a model for benchmarking various technologies is needed but missing at the moment.
In this thesis, a model for evaluation of processes for conversion of cellulosic biomass into power via hydrogen is established. At the same time, tools for assessment of various technologies were developed. The processes are compared with a benchmarking process, i.e. combustion in boiler combined with steam turbine. Biochemical hydrogen production combined with a fuel cell was chosen as an evaluated process in the case study to demonstrate the evaluation model. Data collection on biochemical hydrogen production, cellulose pretreatment, and fuel cells were carried out for the case study. Emission of carbon dioxide (CO2) was chosen as the evaluated environmental load, although extension is possible in the future.
The case study elucidated the following challenges, benefits, and potentials in the biochemical processes:
1) General tendency: To produce an equivalent power, biochemical process should have higher performance than in combustion method, if lignin and hemicellulose is not utilized. The performance is determined by hydrogen production efficiency and energy conversion efficiency of fuel cell in bio-process.
2) Benchmark: If the power consumption in ancillary processes (ex. transportation, sludge treatment, pump loads, purification of hydrogen, etc.) including indirect input in additional raw materials exceed 1208 kWh, biochemical hydrogen production process will emit more CO2, even under an ideal overall performance mentioned above.
3) Preliminary evaluation of an ancillary process: CO2 emission in transportation of rice straw from the rice field to treatment facility would be insignificant (0.63-1.34 kg-CO2/1 ton rice straw transportation) in the entire emission. It is also insignificant compared to the maximum CO2 emission (770.7 kg) caused by maximum ancillary power consumption of bioprocess (1208 kWh).
4) Potentials in Taiwan: If total rice straw in 2006 could be used to produce H2 and then generate power, renewable energy ratio would increase from 3.517% to 3.549%.
Abstract i
中文摘要 iii
致謝 v
Table of contents vi
Figure index viii
Table index xi
Chapter 1 Introduction 1
Chapter 2 Objective 5
Chapter 3 Paper review 9
3.1 Raw material selection 9
3.2 Pretreatment 10
3.3 Hydrolysis 12
3.4 Dark-fermentation 13
3.5 Photo-fermentation 13
3.6 Two-stage process (integration of dark- and photo-fermentation) 14
3.7 Fuel cells 18
3.8 Waste utilization 20
3.8.1 Hemicellulose utilization 20
3.8.1 Lignin utilization 20
Chapter 4 Methodology 23
4.1 Components analysis 23
4.2 Model establishing 23
4.2.1 Combustion method 23
4.2.2 Bio-hydrogen production process 27
Chapter 5 Case Study 33
5.1 Two systems comparison 33
5.1.1 Parameters analysis 33
5.1.2 Systems performance 35
5.1.3 Break-even analysis of net CO2 emission 38
5.1.4 Power demand considering 41
5.1.5 Deduction of power consumption target 44
5.1.6 Relationship analysis 45
5.2 Application in Taiwan 47
5.2.1 CO2 emission in transportation 47
5.2.1.1 Introduction 47
5.2.1.2 Background 47
5.2.1.3 Methodology 51
5.2.1.4 CO2 emission evaluation in main cities and counties in Taiwan 51
5.2.1.5 CO2 emission analysis 63
5.2.1.6 Scaling up study of bioprocess and combustion 65
5.2.2 Non-renewable substitution 69
Chapter 5 Conclusion 73
Reference 75
Appendix 79
[1] Campbell, C.J., Laherrere, J.H., 1998. The end of cheap oil. Sci. Am. 3, 78-83.
[2] Global warming art, http://www.globalwarmingart.com/
[3] Global status report, Renewables 2007. Renewable energy policy network for the
21st century. http://www.worldwatch.org/files/pdf/renewables2007.pdf
[4] S. Manish, Rangan Banerjee, “Comparsion of biohydrogen production
processes.”, Energy System Engineering, Indian Institute of Technology Bombay,
Powai, Mumbai 400076, India, 2007
[5] Compositional analysis of biomass feedstock. INER report 4349R (2006)
[6] Martin Chaplin, “Cellulose”, Water structure and science, http://www.lsbu.ac.uk/water/chaplin.html
[7] Ye Sun, Jiayang Cheng, “Hydrolysis of lignocellulosic materials for ethanol production : a review”, Biorecource Technology 83 (2002) 1-11
[8] 郭明朝,”The Strategic Planning for Cellulosic Ethanol Development at INER”, INER,
2006
[9] S. Manish, Rangan Banerjee, “Comparison of biohydrogen production processes”,
Hydrogen Energy
[10] Nath K, Kumar A, Das D. Hydrogen production by Rhodobacter sphaeroides strain
O.U.001 using spent media of Enterobacter cloacae strain DM11. Appl Microbiol
Biotechnol 2005;68:533–41.
[11] Robert J. Wooley and Victoria Putsche, ”Development of an ASPEN PLUS Physical
Property Database for Biofuels Components”, NREL/MP-425-20685
[12] 張嘉修、黃良銘、鄭幸雄、曾怡禎、朱信、福島康裕,”建構零CO2排放之生
質能源系統以解決21世紀全球暖化與能源危機問題”2007.
[13] 行政院農委會農糧署,” 2006年農作物統計年報”
[14] Assessment report, IPCC, http://www.ipcc.ch/index.htm
[15] Google map, http://maps.google.com.tw/
[16] 行政院環保署地方資料庫,
http://edb.epa.gov.tw/localenvdb//Chunghua/Xihu/index.htm
[17] 行政院經濟部能源局,http://www.moeaboe.gov.tw/Default.aspx?group=2
[18] 許淳均,國立中央大學化學工程研究所,”利用混合特定菌種生產氫氣之研究”,
2001
[19] N. Kataoka, A. Miya and K. Kiriyama, Studies on hydrogen production by continuous
culture system of hydrogen producing anaerobic bacteria. Water Sci Technol 36
(1997), pp. 41–47
[20] Yongzhen Tao, Yang Chen, YongqiangWu, Yanling He, Zhihua Zhou,High
hydrogen yield from a two-step process of dark- and photo-fermentation of sucrose,
International Journal of Hydrogen Energy 32 (2007) 200 – 206.
[21] Yokoi H, Maki R, Hirose J, Hayashi S. Microbial production of hydrogen from starch-manufacturing wastes. Biomass Bioenergy 2002; 22: 389–95.
[22] Tao Y, Chen Y, Wu Y, He Y, Zhou Z. High hydrogen yield from a two step process of dark- and photo-fermentation of sucrose. Int J Hydrogen Energy 2007; 32:200–6.
[23] Heyndrickx, M., A. Vansteenbeeck, P. de Vos, and L. de Lay (1986). Hydrogen gas
production from continuous fermentation of glucose in a minimal medium with
Clostridium butyricum LMG 1213tl. Systematic and Applied Microbiology 8,
239-244.
[24] Innotti, E., D. Kafkawitz, MJ. Wolin, and MP. Bryant (1973). Glucose fermentation
products of Ruminococcus albus grown in continuous culture with Vibrip
succinogenes: changes caused by interspecies transfer of H2. Journal of Bacteriology
114, 1231-1240.
[25] Schroder, C., M. Selig, and P. Schonheit (1994). Glucose fermentation to acetate, CO2
and H2 in the anaerobic hyperthermophilic eubacterium Thermotoga maritima:
involvemtnt of the Embden-Meyerhof pathway. Archives of Microbiology 161,
460-470.
[26] Van Niel, E. W. J., M. A. W. Budde, G. G. de Haas, F. J. van der Wal, P. A. M. Claassen, and A. J. M. Stams. (2002). Distinctive properties of high hydrogen producing extreme thermophiles, Caldicellluosiruptor saccharolyticus and Thermotoga elfii. International Journal of Hydrogen Energy 27, 1391-1398.
[27] Herbert H. P. Fang, and Hong Liu, Effect of pH on hydrogen production from glucose
by a mixed culture, Bioresource Technology, Volume 82, Issue 1, March 2002, Pages
87-93
[28] Xian-Yang Shi and Han-Qing Yu, Continuous production of hydrogen from mixed
volatile fatty acids with Rhodopseudomonas capsulate, International Journal of
hydrogen energy , Volume 31, Issue 12, September 2006, Pages 1641-1647
[29] 江滄柳,國立成功大學航空太空工程研究所。能源科技之明日之星-
燃料電池。
[30] Girishchandra B. Patel, C. Roger MacKenzie, and Brian J. Agnew. Fermentation of
xylose and hemicellulose hydrolysates by an ethanol-adapted culture of Bacteroides
polypragmatus. Arch Microbiol (1986) 146:68- 73
[31] Shabtai, J., Zmierczak, W., Chornet, E. “Conversion of Lignin to reformulated
Gasoline Compositions. 1. Basic Processing Scheme,” In: Proc. 3rd Biomass Confer.
Of the Americas, Montreal; Elsevier, 1997, Vol. 2, p. 1037.
[32] Shabtai, J. S., Saito, I. “Process for the Low-Temperature Depolymerization of Coal
and It’s Conversion to a Hydrocarbon Oil,” U.S. Patent 4,728,418, 1988.
[33] Howard, H. C. “Chemical Constitution of Coal: As Determined by Hydrolytic
Reactions,” In: Chemistry of Coal Utilization, Vol. 1, (Ed. H.H. Lowry), John Wiley,
New York, 1945, p 418.
[34] Makabe, M., Hirano, Y., Ouchi, K. “Extraction Increase of Coals Treated with
Alcohol-Sodium Hydroxide at Elevated Temperatures,” Fuel 1978, 57, 289.
[35] Makabe, M., Ouchi, K. “Reaction Mechanism of Alkali-Alcohol Treatment of Coal,”
Fuel Process. Tech. 1979, 2, 131.
[36] Makabe, M., Ouchi, K. “Structural Analysis of NaOH-Alcohol Treated Coals,” Fuel
1979, 58, 43.
[37] Makabe, M., Ouchi, K. “Effect of Pressure and Temperature on the Reaction of Coal
with Alcohol-Alkali,” Fuel 1981, 60, 327.
[38] Makabe, M., Fuse, S., Ouchi, K. “Effect of the Species of Alkali on the Reaction of
Alcohol-Alkali-Coal,” Fuel 1978, 57, 801.
[39] Yürüm, Y., Tugluhan, A. “Supercritical Extraction and Desulphurization of Beypazari
Lignite by Ethyl Alcohol/NaOH Treatment. 1. Effect of Ethyl Alcohol/Coal Ratio and
NaOH,” Fuel Science and Technology Int’l. 1990, 8, 87.
[40] Ross, D. S., Blessing, J. E. “Alcohols as H-donor Media in Coal Conversion. 2. Base-
Promoted H-donation to Coal by Methyl Alcohol,” Fuel 1979, 58, 438.
[41] Ross, D. S., Blessing, J. E. “Alcohols as H-donor Media in Coal Conversion. 1. Base-
Promoted H-donation to Coal by Isopropyl Alcohol,” Fuel 1979, 58, 433.
[42] Miller, J.E.; Evans, L.; Littlewolf, A.; Trudell, D. E. “Batch Microreactor Studies of
Lignin Depolymerization by Bases. 1. Aqueous Solvents” SAND2002-1317, May
2002.
[43] Miller, J. E.; Evans, L.; Littlewolf, A.; Trudell, D. E. “Batch Microreactor Studies of
Lignin and Lignin Model Compound Depolymerization by Bases in Alcohol
Solvents” Fuel 78(11):1363-1366, 1999.
[44] Miller, J.E.; Evans, L.; Littlewolf, A.; Lopez, M. “Batch Microreactor Studies of Base
Catalyzed Lignin Depolymerization in Alcohol Solvents” ACS Fuel Division
Preprints, 1999.
[45] 陳維新,高立圖書有限公司,能源概論,8.1-8.3,2006
[46] CHEN G., LEUNG D.Y.C., Experimental Investigation of Biomass Waste, (Rice Straw,
Cotton Stalk, and Pine Sawdust), Pyrolysis Characteristics, Energy Sources, Volume
25, Number 4, April 2003, pp. 331-337(7)
[47] 陳文華,郭家倫,陳威希,余慶聰,門立中,黃文松,郭明朝,行政院原子能
委員會,核研所纖維酒精前處理之研發,2007
[48] Patel GB, Breuil C (1981) Isolation and characterization of Baeteroides
polypragrnatus sp. nov., an isolate that produces carbon dioxide, hydrogen and acetic
acid during growth on various organic substrates. In: Moo-Young M, Robinson CW
(eds) Advances in biotechnology, vol 2. Pergamon Press, Toronto, pp 291-296
[49] Esser K, Karsch T (1984) Bacterial ethanol production: advantages and disadvantages.
Proc Biochem 19:116-121
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊