跳到主要內容

臺灣博碩士論文加值系統

(34.204.180.223) 您好!臺灣時間:2021/08/05 15:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:謝在鈞
研究生(外文):Tsai-Chuan Hsieh
論文名稱:長時間活性生物氣膠採樣設備之設計研究
論文名稱(外文):Development of Long-term Sampling Equipment for Viable Bioaerosols
指導教授:蘇慧貞蘇慧貞引用關係
指導教授(外文):Huey-Jen Su
學位類別:碩士
校院名稱:國立成功大學
系所名稱:環境醫學研究所
學門:醫藥衛生學門
學類:公共衛生學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:68
中文關鍵詞:活性生物氣膠物理捕集效率校正活性回收率菌落活性回收率
外文關鍵詞:Colony survival rateModified biological recovery ratePhysical collection efficiencyViable bioaerosols
相關次數:
  • 被引用被引用:0
  • 點閱點閱:214
  • 評分評分:
  • 下載下載:56
  • 收藏至我的研究室書目清單書目收藏:1
大多數生物氣膠採樣設備於長時間採樣下可能造成微生物活性降低,本研究試圖開發一新型生物氣膠自動採樣設備,在泡綿內加入維持微生物活性之液態培養基作為採集基質,來設法改善此一缺失。本研究首先設計一暴露艙,並證明微粒濃度在八個小時的霧化過程中,變異係數僅為6-11%,相對於過去的研究在二小時的暴露艙微粒產生系統過程中,其變異係數為15%而言,本研究所建立之微粒霧化系統為一穩定單元。本研究所設計之採樣設備針對1至8小時不同的採樣時間進行採樣性能測試,對於二種測試菌株之物理捕集效率平均約從70-45%,較過去類似的研究(最佳的物理捕集效率40%)而言,有一較佳的物理補集效率。而在校正活性回收率(mBR)的部份發現,以大腸桿菌及枯草桿菌進行測試時,其mBR皆有隨著採樣時間有下降的趨勢,分為從3.9%至0.1%及 60%至 18%。但在二個小時內mBR的測試結果與其他研究相比而言,雖然對敏感性菌株(大腸桿菌)有相似的結果(3.9% vs 4%);但以對環境壓力較不敏感菌株(枯草桿菌)進行測試時,相較過去的研究則發現有較佳的校正活性回收率(60-53% vs 32%)。而本採樣設備性能測試中的另一評估因子-菌落活性回收率(colony survival rate),在八個小時內分別以枯草桿菌及大腸桿菌的測試結果,從約67%下降至15%及從53%下降至0.1%。然而當在採樣時間設定在二個小時內時,以二種菌株進行測試的結果(枯草桿菌:67-48%; 大腸桿菌53-34 %),也相較於過去的(15%)有顯著的改善。此外,在採樣設備並排的比較測試中,發現本研究以泡綿為設計的採樣設備以大腸桿菌進行測試,不論在二個小時及四個小時的結果中,都發現較參考採樣設備(BioSampler)有較佳的相對存活率(relative survival rate)。本研究所設計之採樣設備未來將測試其他相關因子,希望在本採樣設備完善後,長時間暴露於活性生物氣膠所造成健康影響的問題能夠被更進一步的探討。
Conventional samplers are often criticized for limited application in conducting long-term monitoring of viable bioaerosols. In this study, a newly equipment, using the porous foam coated with liquid medium as a collection subtract to maintain the viability of collected microbial particles, was developed. Our particle generation system within a constructed exposure chamber was considered stable with a coefficient of variation (CV) for number concentrations being only 6-11 % over 8 hr nebulization process, compared to previous research (CV =15 % over 2 hr). The overall physical collection efficiency of this instrument for Bacillus subtilis and Escherichia coli decreased while sampling time prolong to 8 hr (average 70-45 % for both species), yet, the result was better than that of the past study (best at 40%). The modified biological recovery rate (mBR), decreased while test sampling time prolong to 8 hr, respectively. Yet, we found that the mBR for stress-sensitive species, E. coli (3.9 %), was similar with other studies while the sampling interval set within 2 hr (4 %) and the mBR for robust species, B. subtilis (60-53 %), was better than that of other study (32 %). Furthermore, the other sampling performance factor, colony survival rate (CS), ranged from 67 % to 15 % for B. subtilis; 53 % to 0.1 % for E. coli, respectively. The CS obtained in this study (67-48 % for B. subtilis; 53-34 % for E. coli) showed a far better rate as compared with other studies (15%) while sampling for 1-4 hr. Besides, the results from the side-by-side sampling instrument performance comparison test represented that this foam-based sampler showed a better relative survival rate than the reference sampler - BioSampler over 2 h and 4 h sampling period. In the future work, some aspect of this sampler need to be further tested, eventually, after this equipment is well development, the data about long-term exposure to viable bioaeorsols and the further relationship between human health could be conducted.
Abstract …………………………………………………………………………………….2
摘 要………………………………………………………………………………………..3
誌 謝………………………………………………………………………………… …….4
1. Introduction ..................................................................................................................... 8
1.1 Bioaerosols .............................................................................................................. 8
1.2 Sampling instruments .............................................................................................. 9
1.2.1 Impaction ...................................................................................................... 9
1.2.2. Impingement .............................................................................................. 12
1.2.3. Filtration .................................................................................................... 14
2. Objective ......................................................................................................................... 19
3. Material and Methods ................................................................................................... 20
3.1 The newly development instrument ....................................................................... 20
3.2 Sampling flow rate determination ......................................................................... 24
- relative humidity monitoring experiment .................................................................. 24
3.3. Sampling time determination and sampling performance evaluation .................. 26
3.3.1 Biological particle exposure system ........................................................... 26
3.3.2 Test bacterial broth .................................................................................... 28
3.3.3. Particles Generation Stability Test ........................................................... 29
3.3.4. Viability Test within Nebulizer Suspension ............................................... 32
3.3.5. Sampling time and Reference sampler comparison test ............................ 32
3.3.6. Extraction method and enumeration of viable bacteria ............................ 33
4. Results and Discussion .................................................................................................. 38
4.1. Relative Humidity Monitoring Experiment........................................................... 38
4.2. Particles Generation Stability Test ...................................................................... 40
4.3. Viability Test within Nebulizer Suspension .......................................................... 46
4.4 Sampling time and Reference sampler comparison test ........................................ 48
4.4.1 Physical collection efficiency and Modified biological recovery rate ....... 48
4.4.3 Relative survival rate – samplers’ comparison test .................................... 52
5. Conclusion ...................................................................................................................... 55
Reference ............................................................................................................................ 56
Appendix 1 ......................................................................................................................... 65
Appendix 2 ......................................................................................................................... 66
Appendix 3 ......................................................................................................................... 67
Agranovski, I.E., Braddock, R.D., and Myojo, T. (1999). Removal of aerosols by bubbling through porous media. Aerosol Science and Technology, 31, 249-257.
Agranovski, I. E.,Braddock R. D., and Myojo T. (2001) Comparative study of the performance of nine filters utilized in filtration of aerosols by bubbling, Aerosol Science and Technology, 35, 852–859.
Agranovski, I.E., Agranovskib, V., Reponenc T,, Willekec K., and Grinshpunc, S.A. (2002). Development and evaluation of a new personal sampler for culturable airborne microorganisms. Atmospheric Environment, 36, 889–898.
Agranovski, I. E., Safatov, A. S., Pyankov, O. V., Sergeev, A. N., Agafonov, A. P., and Ignatiev, G. M. (2004a). Monitoring of viable airborne SARS virus in ambient air. Atmospheric Environment, 38, 3879–3884.
Agranovski, V, Ristovski, Z, Blackall, P.J., and Morawska, L. (2004b). Size selective assessment of airborne particles in swine confinement building with the UVAPS. Atmospheric Environment, 38, 3893-3901.
Agranovski, I.E., Safatov, A., Borodulin, A., Pyankov, O., Petrishchenko, V., Sergeev, A., Sergeev, A., Agranovski, V., and Grinshpun, S. (2004c). New Personal Sampler for Viable Airborne Viruses: Feasibility Study, Journal of aerosol science, 36, 609–617.
Agranovski, I.E., Safatov, A., Pyankov, O., Sergeev, A.A., Sergeev, A.N., and Grinshpun, S. A. (2005). Long-term sampling of viable airborne viruses. Aerosol Science and Technology, 39, 912-918.
Aizenberg, V., Reponen, T., Grinshpun, S.A., and Willeke, K. (2000). Performance of Air-O-Cell, Burkard, and Button samplers for total enumeration of airborne spores. American Industrial Hygiene Association Journal, 61, 855-864.
Alvarez, A. J., Buttner, M. P., and Stetzenbach, L. D. (1995). PCR for bioaerosol monitoring sensitivity and environmental interference. Applied and Environmental Microbiology, 61, 3639-3644.
Amies, C.R. (1967). A modified formula for the preparation of Stuart's Transport Medium. Canadian Journal of Public Health. Revue Canadienne de Sante Publique, 58, 296-300.
An, H. R., Mainelis, G., and Yao, M. (2004). Evaluation of a high-volume portable bioaerosol sampler in laboratory and field environments. Indoor Air, 14, 385-393.
Applebaum, P.C., Spangler, S.K., Crist, R., and Crist, A.E. (1988). Survival of bacteria in Difco Culture swab and Marion Culturette II transport systems. Journal of Clinical Microbiology, 26, 136–138.
Black, J.G. (2008), Microbiology: principals and explorations (7th ed.), Prentice Hall, New Jersey
Burton, N.C., Adhikari, A., and Grinshpun, S.A. (2005). The effect of filter material on bioaerosol collection of Bacillus subtilis spores used as a Bacillus anthracis stimulant. Journal of Environmental Monitoring, 7, 475–480.
Chang, C.W., Grinshpun, S., Willeke, K., Macher, J., Clark, S., and Juozaitis, A. (1995). Factors affecting microbiological colony count accuracy for bioaerosol sampling and analysis. American Industrial Association Journal, 56, 979–986.
Chapin, A., Rule, A., Gibson, K., Buckley, T., and Schwab, K. (2005). Airborne multidrug-resistant bacteria isolated from a concentrated swine feeding operation. Environmental Health Perspective. 113, 137-142.
Chen, P.-S., and Li, C.-S. (2005). Sampling performance for bioaerosols by flow cytometry with fluorochrome. Aerosol Science and Technology, 39, 231–237.
Cown, W. B. (1957). The critical orifice liquid impinger as a sampler for bacteria aerosols. Applied and Environmental Microbiology, 5, 119-124.
Crupi, R.S., Asnis, D.S., Lee,C.C., Santucci, T., Marino, M.J., and Flanz, B.J. (2003). Meeting the challenge of bioterrorism: lessons learned from West Nile virus and anthrax. The American Journal of Emergency Medicine, 21, 77–79.
Douwes, J., Thorne, P., Pearce, N., and Heederik D. (2003). Bioaerosol health effects and exposure assessment: progress and prospects. Annals of Occupational Hygiene, 47, 187-200.
Eduard, W., and Heederik, D. (1998). Methods for quantitative assessment of airborne levels of non-infectious micro-organisms in highly contaminated work environments. American Industrial Hygiene Association journal, 59, 113–127.
Fung, F., and Hungson, W.G. (2003). Health effects of indoor fungal bioaerosl exposure. Applied Occupational and Environmental Hygiene, 18, 535-544.
Griffiths, W.D., Stewart, I.W., Reading, A.R. and Futter, S.J. (1996). Effect of aerosolisation, growth phase and residence time in spray and collection fluids on the culturability of cells and spores. Journal of Aerosol Science, 27, 803–820.
Griffiths, W.D., Stewart, I.W., Clark, J.M. and Holwill, I.L. (1999). Procedures for the characterisation of bioaerosol particles, Part I: Aerosolization and recovery agent effects. Aerobiologia, 15, 267–280.
Grinshpun, S.A., Willeke, K., Ulevicius, V., Juozaitis, A., Terzieva, S., Donnelly, J., Stelma, G.N., and Brenner, K.P. (1997). Effect of impaction, bounce and reaerosolization on collection efficiency of impingers. Aerosol Science and Technology, 26, 326–342.
Heidelberg, J., Shahamat, M., Levin, M., Rahman, I., Stelma, G., Grim, C., and Colwell, R. (1997). Effect of aerosolization on culturability and viability of gram-negative bacteria, Applied and Environmental Microbiology, 63, 3585–3588.
Hill, S. C., Pinnick, R. G., Niles, S., Pan, Y.-L., Holler, S., and Chang, R. K. (1999). Real-time measurement of fluorescence spectra from single airborne biological particles. Field Analytical Chemistry and Technology, 3, 221–239.
Hinds, W.C. (1999). Aerosol Technology: Properties, behavior, and measurement of airborne particles. New York: John Wiley & Sons.
Inglesby, T.V., O’Toole, T., Handerson, D. A., Bartlett, J. G., Ascher, M.S., Eitzen E., Friedlander, A. M., Gerberding, J., Hauer, J., Hughes, J., McDade, J., Osterholm, M. T., Parker, G., Perl, T. M., Russell, P. K., and Tonat, K. (2002). Anthrax as a biological weapon. Journal of American Medical Association, 287, 17
Johnson, B. D., Martin, D., and Resnick, I. G. (1994). Efficacy of selected respiratory protective equipment challenged with Bacillus subtilis subsp. niger. Applied and Environmental Microbiology, 60, 2184–2186.
Karwowska, E. (2003). Microbiological air contamination in some educational settings. Polish Journal of Environmental Studies, 12, 181-185.
Kenny, L.C., Stancliffe, J.D., Crook, B., Stagg, S., Griffiths, W.D., Stewart, I.W., and Futter, S.J. (1998). The adaptation of existing personal inhalable aerosol samplers for bioaerosol sampling. American Industrial Hygiene Association Journal, 59, 831-841.
Kenny, L.C., Bowry, A., Crook, B., and Stancliffe, J.D. (1999). Field testing of a personal size-selective bioaerosol sampler. The Annals of occupational hygiene, 43, 393-404.
Kenny, L.C., Aitken, R.J., and Beaumont, G. (2001). Investigation and application of a model for porous foam aerosol penetration. Journal of Aerosol Science, 32, 271–285.
Kolter, R., Siegala, D.A., and Tomo A. (1993). The stationary phase of the bacterial life cycle. Annual Reviews in Microbiology,47,1993, 855–874.
Li, C.-S., Hao, M.-L., Lin, W.-H., Chang, C.-W., and Wang, C.-S. (1999). Evaluation of microbial samplers for bacterial microorganisms, Aerosol Science and Technology, 30, 100–108.
Li, C.H., and Lin, Y.C. (1999). Sampling performance of impactors for bacterial bioaerosols. Aerosol Science and Technology, 30, 280–287.
Lin, X., Willeke, K., Ulevicius, V., and Grinshpun, S.A. (1997). Effect of sampling time on the collection efficiency of All-Glass Impingers, American Industrial Hygiene Association Journal, 58, 480–488.
Lin, W.-H., and Li, C.-S. (2003). Influence of storage on the fungal concentration determination of impinger and filter Samples. American Industrial Hygiene Association Journal, 64, 102–107.
Lin, X., Reponen, T.A., Willeke, K., Grinshpun, S.A., Foarde, K.K., and Ensor, D.S. (1999). Long-term sampling of airborne bacteria and fungi into a non-evaporating liquid. Atmospheric Environment, 33, 4291-4298.
Lin, X., Reponen, T., Willeke, K., Wang, Z., Grinshpun, S.A., and Trunov, M. (2000). Survival of airborne microorganisms during swirling aerosol collection. Aerosol Science and Technology, 32, 184–196.
Macher, J.M., and Willeke, K. (1992). Performance criteria for bioaerosol samplers, Journal of Aerosol Science, 23, S647–S650.
Macher, J.M. (1997). Evaluation of bioaerosol sampler performance. Applied Occupational Environmental Hygiene, 12, 730–736.
Macher, J.M. (1999). Bioaerosols: assessment and control. American Conference of Governmental Industrial Hygienists (ACGIH), First ed. Cincinnati.
Mainelis, G., Willeke, K., Adhikari, A., Reponen, T., Grinshpun, S.A. (2002). Design and collection efficiency of a new electrostatic precipitator for bioaerosol collection. Aerosol Science and Technology, 36, 1073-1078.
Mainelis, G., Berry, D., An, R.H., Yao, M., DeVoe, K., Fennell, E.D., and Jaeger, R. (2005). Design and performance of a single-pass bubbling bioaerosols generator. Atmospheric Environment, 39, 3521–3533.
Mark, D., and Vincent, J.H. (1986). A new personal sampler for airborne total dust in workplaces. The Annals of occupational hygiene, 30, 89–102.
Maus, R., Goppelsroder, A., and Umhauer, H. (2001). Survival of bacterial and mold spores in air filter media. Atmospheric Environment, 35, 105-113.
May, K.R., and Harper, G.J. (1957). The efficiency of various liquid impinger samplers in bacterial aerosols, British journal of industrial medicine, 14, 287–297.
Mouilleseaux, A., Squinazi, F. and Festy, B. (1993). Microbial characterization of air quality in classrooms. In: Proceedings of Indoor Air ’93: The 6th International Conference on Indoor Air Quality and Climate, Helsinki, Finland, July, 1993, 4, 195– 200
Muilenberg, M.L., and Burge, H.A. (1994). Filter cassette sampling for bacterial and fungal aerosols, in Sampson, R.A., Flannigan, B., Flannigan, M.E., Verhoeff, A.P., Adan, C.G., Hoekstra, E.S. (Eds), Health implications of fungi in indoor environments. Elsevier, pp. 75-89.
Muilenberg, M.L. (2003). Sampling devices. Immunology and allergy clinics of North America, 23, 337–355.
Nevalainen, A. (1989). Bacterial aerosol in indoor Air, PhD Dissertation, Kuopio, Finland, National Public Health Institute.
Nevalainen, A., Willeke, K., Liebhaber, F., Pastuszka,J., Burge, H., and Henningson, E. (1993). Bioaerosol sampling. in K. Willeke and P. A. Baron. Van Nostrand Reinhold (Eds.), Aerosol Measurement: Principles, Techniques, and Applications, New York, pp. 471–492.
Parks, S.R., Bennett, A.M., Speight, S.E., and Benbough, J.E. (1996). An assessment of the Sartorius MD8 microbiological air sampler. Journal of Applied Bacteriology, 80, 529-534.
Pasanen, A.L. (2001). A review: Fungal exposure assessment in indoor environments. Indoor Air, 11, 87–98.
Peccia, J., and Hernandez, M. (2006). Incorporating polymerase chain reaction-based identification, population characterization, and quantification of microorganisms into aerosol science: a review. Atmospheric Environment, 40, 3941-3961
Perry, J.L. (1997). Assessment of swab transport systems for aerobic and anaerobic organism recovery. J Clin Microbiol., 35, 1269–1271.
Qian, Y., Willeke, K., Ulevicius, V., Grinshpun, S. A., and Donnelly, J. (1995). Dynamic size spectrometry of airborne microorganisms: Laboratory evaluation and calibration. Atmospheric Environment, 29, 1123-1129.
Rao, A.K., and Whitby, K.T. (1978). Non-ideal collection characteristics of inertial impactors: I. Single-Stage Impactors and Solid Particles, Journal of aerosol science, 9, 77-86.
Reponen, T., Willeke, K., Ulevicius, V., Grinsh- pun, S. A., and Donnelly, J. (1997). Techniques for dispersion of microorganisms into Air, Aerosol Science and Technology, 27, 405-421.
Stewart, S., Grinshpun, S.A., Willeke, K., Terzieva, S., Ulevicius, V., and Donnelly, J. (1995). Effect of impaction stress on microbial recovery on an agar surface. Applied and Environmental Microbiology, 61, 1232-1233.
Stone, R. C., and Johnson, D.L. (2002). Note on the effect of nebulization time and pressure on the culturability of Bacillus subtilis and Pseudomonas fluorescens, Aerosol Science and Technology, 36, 536-539
Szewczyk, K. W., Lehtimaki, M., Pan, M. J., Krishnan, U., and Willeke, K. (1992). Measurement of the change in aerosol size distribution with bacterial growth in a pilot scale fermenter. Biotechnology and Bioengineering, 39, 243-245.
Terzieva, S., Donnelly, J., Ulevicius, V., Grinshpun, S.,Willeke, K., Stelma, G., and Brenner, K. (1996). Comparison of methods for detection and enumeration of airborne microorganisms Collected by Liquid Impingement, Applied and Environmental Microbiology, 62, 2264–2272.
Tseng, C.-C., and Li, C.-S. (2005). Collection efficiencies of aerosol samplers for virus-containing aerosols. Journal of Aerosol Science, 36, 593–607.
Tyler, M.E. (1959). Bacterial aerosol samplers: I. Development and evaluation of the All-Glass Impinger. Applied and Environmental Microbiology, 7, pp. 337-349.
Ulevicius, V., Willeke, K., Grinshpun, S.A., Donnelly, J., Lin, X. and Mainelis, G. (1997). Aerosolization of particles from a bubbling liquid: Characteristics and generator development. Aerosol Science and Technology, 26, 175–190.
Wang, Z., Reponen, T., Grinshpun, S.A., Gorny, R.L., and Willeke, K. (2001). Effect of sampling time and air humidity on the bio-efficiency of filter samplers for bioaerosol collection. Journal of Aerosol Science, 32, 661-674.
Willeke, K., Lin, X., and Grinshpun, S.A. (1998). Improved aerosol collection by combined impaction and centrifugal motion. Aerosol Science and Technology, 28, 439–456.
Xu, M., and Willeke, K. (1993a). Right angle impaction and rebound of particles, Journal of Aerosol Science, 24, 19-30.
Xu, M., Willeke, K., Biswas, P., and Pratsinis, S. (1993b). Impaction and rebound of particles at acute incident angles, Aerosol Science and Technology, 18, 143-155.
Yao, M., and Mainelis, G. (2006). Effect of physical and biological parameters on enumeration of bioaerosols by portable microbial impactors. Journal of Aerosol Science, 37, 1467–1483.
Yao, M., and Mainelis, G. (2007). Use of portable microbial samplers for estimating inhalation exposure to viable biological agents. Journal of Exposure Science and Environmental Epidemiology, 7, 31–38.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top