跳到主要內容

臺灣博碩士論文加值系統

(35.172.136.29) 您好!臺灣時間:2021/07/29 07:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:周孟誼
研究生(外文):Meng-Yi Chou
論文名稱:使用呼吸器的病人接受肺泡灌洗術後呼吸系統機械性之變化
論文名稱(外文):Alternations in respiratory mechanics in mechanically ventilated patients following bronchoalveolar lavage
指導教授:陳昌文陳昌文引用關係
指導教授(外文):Chang-wen Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:臨床醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:60
中文關鍵詞:呼吸系統機械性肺泡灌洗術內因性吐氣末正壓
外文關鍵詞:intrinsic positive end-expiratory pressurerespiratory mechanicsBronchoalveolar lavage
相關次數:
  • 被引用被引用:0
  • 點閱點閱:202
  • 評分評分:
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:0
研究背景
肺泡灌洗術(bronchoalveolar lavage, BAL)在使用呼吸器的病人身上,是一常用且重要的獲得下呼吸道檢體的方法。在肺泡灌洗術前後病人的呼吸系統機械性(包括呼吸道阻力及肺彈力)會產生變化,但確切的危險因子仍不得而知。此研究中,我們對呼吸系統機械性之變化作一深入研究,並尋找可能的危險因子。

材料與方法
自2006年10月至2008年3月間共分析了五十六位使用呼吸器的病人。以固定容積、氣流流速下之氣道阻斷法(interrupter method)測量肺泡灌洗術前、後呼吸系統機械性之變化。

結果
具有明顯內因性吐氣末正壓(intrinsic positive end-expiratory pressure, PEEPi大於等於一公分水柱)的病人,在接受肺泡灌洗術後呼吸道阻力及肺順應性會出現較大的變化。在具有明顯內因性吐氣末正壓的病人這一組(共十四位病人),最大呼吸道阻力(maximal resistance, Rmax)是22.5 + 5.9 cmH2O/L/S,剛接受肺泡灌洗術後上升至31.6 + 8.5 cmH2O/L/S,三十分鐘後Rmax仍維持很高(28.4 + 7.5 cmH2O/L/S, p<0.0001)。最小呼吸道阻力(Minimal airway resistance, Rmin), delta resistance 變化的趨勢亦同。而在不具明顯內因性吐氣末正壓(內因性吐氣末正壓小於一公分水柱)的病人這一組(共42個病人),接受肺泡灌洗術之前的最大呼吸道阻力是15.5 + 3.5 cmH2O/L/S。剛接受肺泡灌洗術後上升至17.6 + 4.6 cmH2O/L/S,30分鐘後則降至與肺泡灌洗術前差不多(16.6 + 4.3 cmH2O/L/s, p<0.001)。最小呼吸道阻力,delta resistance變化的趨勢亦與Rmax相同,兩組呈現有意義的差別(p<0.0001)。剛接受肺泡灌洗術後,肺順應性(compliance)在具有明顯內因性吐氣末正壓的病人這一組較不具明顯內因性吐氣末正壓的病人下降為多(p<0.001),但此現象隨時間逐漸消失。

結論
具有明顯內因性吐氣末正壓的病人接受肺泡灌洗術時,會承受較劇烈的變化。臨床醫師對此群病人執行肺泡灌洗術時務須謹慎、多加注意。
Background:
Bronchoalveolar lavage(BAL) can be used for quantitative bacteriological diagnosis in mechanically ventilated patients suspected of lower respiratory tract infection. BAL may lead to changes in respiratory mechanics, including increased airway resistance and decreased lung compliance. However, risk factors leading to these changes remain unknown. The current study tried to identify risk factors contributing to changes in respiratory mechanics following BAL.

Materials and Methods:
Changes in respiratory mechanics were assessed in fifty-six mechanically ventilated patients receiving BAL using interrupter method under volume-cycled, constant flow ventilation.

Results:
Intrinsic PEEP(PEEPi) was found to be significantly correlated with changes in respiratory system resistance and compliance. In patients with significant PEEPi(>1 cmH2O, n=14), maximal resistance(Rmax) before BAL was 22.5 + 5.9 cmH2O/L/S. Rmax increased to 31.6 + 8.5 cmH2O/L/S immediately after BAL, and by the end of 30 minutes, Rmax remained high(28.4 + 7.5 cmH2O/L/S, p<0.001). The changes in minimal resistance(Rmin), delta resistance(△R) followed the trend of Rmax. In patients without significant PEEPi(<1 cmH2O, n=42), Rmax before BAL was 15.5 + 3.5 cmH2O/L/S. Rmax increased to 17.6 + 4.6 cmH2O/L/S immediately after BAL and by the end of 30 minutes, Rmax fell toward the baslein level(16.6 + 4.3 cmH2O/L/S, p<0.001). The changes of Rmin, △R followed the trend of Rmax too. Increase in Rmax, Rmin, △R following BAL were significantly higher in patients with significant PEEPi than those without significant PEEPi throughout the recording period(p<0.001). Respiratory system compliance immediately following BAL was also significantly reduced in patients with significant PEEPi than those without(p<0.001), but this condition waned over 30 minutes.

Conclusion:
Patients with significant PEEPi experienced greater changes in respiratory mechanics than those without. Physicians should be more cautious when performing BAL in such kind of patients.
Abstract P.3
中文摘要 P.5
Acknowledgement P.7
Table of contents P.8
List of Tables P.10
List of Figures P.11
List of Appendics P.12
Introduction P.13
Materials and Methods P.15
Patients P.15
BAL protocol P.15
Instrumentation P.16
The interrupter method P.17
Measurements and calculations of respiratory mechanics P.17
Hemodynamic variables P.19
Arterial blood tests P.19
Statistical analysis P.19
Results P.21
Demographic features and baseline characteristics P.21
Changes in hemodynamic variables following BAL P.22
Changes in arterial blood tests following BAL P.23
Changes in respiratory mechanics following BAL P.24
Correlation between changes in respiratory P.25
mechanics and individual parameters
Intrinsic positive end-expiratory pressure(PEEPi) P.25
Baseline characteristics of patients with or P.26
significant PEEPi
Quantitative culture results in patient with or P.27
without significant PEEPi
Changes in peak airway pressure in patients with P.28
or without significant PEEPi immediately following BAL
Changes in respiratory mechanics in patients with P.28
or without significant PEEPi immediately following BAL
Evolutional changes in respiratory mechanics in P.29
patients with or without significant PEEPi following
BAL
Increase of PEEPi immediately following BAL in P.29
patients with significant PEEPi
Discussion P.30
Conclusion P.34
References P.35
Curriculum vitae P.60
1. Udaya B.S. Prakash. Bronchoscope. In: Mason: Murray & Nadel’s Textbook of Respiratory medicine. Sauders, 2005; 617-650
2. Hertz MI, Woodward ME, Gross CR et al. Safety of bronchoalveolar lavage in the critically ill, mechanically ventilated patient. Crit Care Med 1992 ; 19 :1526-1532
3. Montravers P, Gauzit R, Dombret MC et al. Cadiopulmonary effects of bronchoalveolar lavage in critically ill patients. Chest 1993; 104: 1541-1547.
4. Spamnevello A, Migliori GB, Satta A, Sharara A, Ballardini L et al. Bronchoalveolar lavage causes decrease in PaO2, increase in (A-a) gradient value and bronchoconstriction in asthmatics. Respir. Med. 1998; 92: 191-7.
5. Klein U, Karzai W, Zimmermann P, Hannemann U, Koschel U et al. Changes in pulmonary mechanics after fiberoptic bronchoalveolar lavage in mechanically ventilated atients. Intensive. Care. Med. 1998; 24: 1289-93.
6. R. Wayne Lawson, Jay I. Peters, David C. Shelledy. Effects of fiberoptic bronchoscopy during mechanical ventilation in a lung model. Chest 2000; 118 ; 824-831
7. Klech H & Pohl W. Technical recommendations and guidelines for bronchoalveolar lavage (BAL). Eur. Respir. J. 1989; 2: 561-85.
8. Bates JHT, Hunter IW, Sly PD, Okubo S, Filiatrault S et al. Effect of valve closure time on the determination of respiratory resistance by flow interruption. Med. & Biol. Eng.& Comput. 1987; 25: 136-40.
9. Lit LM, Doelken P, Mayo PH. Correction of error in respiratory resistance measurements made with the flow-interruption technique during mechanical ventilation: evaluation of the Puritan Bennett 7200 and 840 ventilators. Respir. Care. 2004; 49: 1022-8.
10. Kochi T, Okubo S, Zin WA, Milic-Emili J. Flow and volume
dependence of pulmonary mechanics in anesthetized cats. J. Appl. Physiol. 1988; 64: 441-50.
11. Majid M. Mughal, Daniel A. Culver, Omar A. Minai et al. Auto-positive end- inspiratory pressure: mechanisms and treatment. Cleve Clin J Med 2005; 72: 801-809.
12. Rossi A, Polese G, Brandi G, Conti G. Intrinsic positive end-expiratory pressure (PEEPi). Intensive. Care. Med. 1995; 21: 522-36.
13. Nucci G, Mergoni M, Bricchi C, Polese G, Cobelli C et al. On-line monitoring of intrinsic PEEP in ventilator-dependent patients. J. Appl. Physiol. 2000; 89: 985-995.
14. Lawson RW, Peters JI and Shelledy DC. Effects of fiberoptic bronchoscopy during mechanical ventilation in a lung model. Chest 2000; 118: 824-31.
15. Lindgren S, Odenstedt H, Olegard C, Sondergaard S, Lundin S et al.
Regional lung recruitment after endotracheal suction during volume- or pressure-controlled ventilation: a study using electric impedance tomography. Intensive. Care. Med. 2007; 33: 172-80.
16. Montravers P, Gauzit R, Dombret MC, Blanchet F and Desmonts JM. Cardiopulmonary effects of bronchoalveolar lavage in critically ill patients. Chest 1993; 104: 1541-7.
17. Hough CL, Kallet RH, Ranieri M, Rubenfeld GD, Luce JM et al. Intrinsic positive end-expiratory pressure in acute respiratory distress syndrome (ARDS) Network subjects. Crit. Care. Med. 2005; 33: 527-32.
18. Brochard L. Intrinsic (or auto-) PEEP during controlled mechanical ventilation. Intensive. Care. Med. 2002; 28: 1376-8.
19. Gaio E and Melo C. A pattern to evaluate airway resistive phenomenon using Rohrer’s equation. Advan. Physiol. Edu. 2007; 31: 121.
20. Polese G, Rossi A, Appendini L, Brandi G, Bates JHT et al. Partitioning of respiratory mechanics in mechanically ventilated patients. J Appl Physiol 1991; 71: 2425-33.
21. Bauer TT, Arosio C, Monton C, Filella X, Xaubet A et al. Systemic inflammatory response after bronchoalveolar lavage in critically ill patients. Eur. Respir. J. 2001; 17: 274-80.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top