跳到主要內容

臺灣博碩士論文加值系統

(3.236.23.193) 您好!臺灣時間:2021/07/24 13:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:簡怡婷
研究生(外文):Yi-Ting Chien
論文名稱:超音波斷層掃描技術應用於骨頭截面成像系統發展
論文名稱(外文):Development of Bone Cross-sectional Imaging System with Ultrasonic Tomography
指導教授:陳天送陳天送引用關係
指導教授(外文):Tainsong Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:醫學工程研究所碩博士班
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:81
中文關鍵詞:模擬反射式超音波斷層掃描超音波斷層影像系統截面影像
外文關鍵詞:Ultrasound computerized tomography (UCT)ultrasonic reflection tomography (URT)cross-sectional images and simulation
相關次數:
  • 被引用被引用:1
  • 點閱點閱:149
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
骨頭截面成像系統可用來提供骨組織的結構與組織特性,並可利用此技術來發展許多的應用,像是評估骨密度以監控骨質疏鬆症。超音波技術在醫學使用上相當的普遍,除了具有非侵入式的優勢外,同時對人體的器官組織不會產生輻射傷害、安全性較高且成本較低。超音波斷層影像技術(UCT)可重建組織截面構造,提供斷面影像;另外,定量化超音波(QUS)參數提供了組織的物理特性,是另一種具有潛力的組織評估方法。因此,本研究嘗試建立一套反射式超音波斷層影像系統(URT),利用此技術來重建組織截面構造影像,並搭配每一個角度的超音波量化參數,提供一完整的組織斷面特徵影像。本研究同時透過軟體模擬超音波通過組織時,在物理特性上之改變,並依此建構一套超音波斷層掃描模擬系統,作為日後實際掃描系統之輔助工具。在假體測試的結果中,軟體模擬與實際硬體實驗都具有相當低的誤差(1.31%和4.05%),證明本系統能準確偵測包含物體輪廓及厚度的截面形態資訊,其所搭配的截面量化參數,更能做出客觀且整體性的評估。在實際骨頭的實驗中發現,本系統所量測的骨頭斷面型態與特徵參數,都與Micro-CT的計算結果相似(Pearson相關係數R=0.832、回歸分析 =0.642),也證明本系統對於未來應用於實際骨組織的可行性。
Bone cross-sectional imaging system could provide the information of bone structure and properties. It is important for many applications such as assessing bone density for monitoring osteoporosis. Ultrasound has been widely used in medicine because of non-invasion, non-radiation, safe, and inexpensive. Ultrasound computerized tomography (UCT) is a technique that has been utilized to reconstruct cross-sectional images of tissue. Furthermore, the quantitative ultrasound (QUS) is a potential assessment providing physical parameters of tissue. Therefore, we developed an imaging system by ultrasonic reflection tomography (URT) that could be applied to obtain cross-sectional information of object and quantitative parameter from each angle. An URT simulation algorithm was also developed which could simulate ultrasonic signal propagation in tissue as an auxiliary tool for developing an UCT system. In phantom experiments, our results indicated that there were minimum errors in the simulation and experimental results, respectively (1.31% and 4.05%). Hence, our system could not only provide the cross-sectional conformation of tissue, including thickness and area, but also quantitative information of tissue. That is useful to make an objective and integral assessment for bone density. In bone experiment, we found that cross-sectional conformation and quantitative information of bone were similar to the results calculated by Micro-CT (SkyScan 1076, SKYSCAN, Kontich, Belgium), (Pearson's correlation coefficient, R=0.832 and regression analysis, =0.642). Our system shows the feasibility to assess bone density in the future.
摘要 I
ABSTRACT II
謝誌 III
目錄 IV
表目錄索引 VII
圖目錄索引 VIII
第1章 緒論 1
1.1 研究背景 1
1.1.1 骨骼結構 1
1.1.2 骨質疏鬆症 1
1.1.3 臨床上診斷骨質疏鬆症的方式 3
1.2 研究動機與目的 4
1.3 文獻回顧 5
1.4 論文架構 9
第2章 研究原理 10
2.1 聲波在物質中的傳遞特性 10
2.2 超音波量化參數 10
2.2.1 傳統穿透式量測法 10
2.2.2 傳統反射式量測法 13
2.3 超音波斷層掃描原理 16
2.3.1 反射式超音波斷層掃描(URT) 16
2.3.2 穿透式超音波斷層掃描(UTT) 19
2.3.3 反投影演算法 21
2.4 聲波模擬 22
2.5 MICRO-CT (MICROCOMPUTED TOMOGRAPHY) 24
第3章 實驗材料與方法 26
3.1 硬體實驗架構 26
3.1.1 假體實驗設計 26
3.1.2 骨頭實驗設計 27
3.2 聲場模擬方法 30
3.3 聲波模擬 32
3.3.1 聲波模擬訊號計算 32
3.4 聲波模擬系統驗證方法 36
3.4.1 不同中心頻率之參考訊號模擬 36
3.4.2 聲波通過不同物質之模擬 36
3.4.3 聲波通過不同厚度之模擬 36
3.4.4 URT模擬實驗 37
3.5 URT訊號處理與影像重建方法 38
3.5.1 輪廓影像重建方法 38
3.5.2 量化影像計算與驗證方法 38
第4章 實驗結果與討論 40
4.1 聲波模擬系統驗證 40
4.1.1 不同中心頻率之參考訊號比較 40
4.1.2 聲波通過不同物質之比較 40
4.1.3 聲波通過不同厚度之比較 47
4.2 URT模擬實驗 54
4.2.1 輪廓重建與量化影像重建結果 54
4.3 假體實驗 59
4.3.1 輪廓及量化影像重建結果 59
4.4 實際骨頭實驗 69
第5章 結論與未來展望 76
5.1 結論 76
5.2 未來展望 77
參考文獻 78
附錄一 骨頭實驗各個ROI計算值 81
[1]P. Augat and S. Schorlemmer, "The role of cortical bone and its microstructure in bone strength," Age Ageing, vol. 35 Suppl 2, pp. ii27-ii31, Sep 2006.
[2]A. Basillais, S. Bensamoun, C. Chappard, B. Brunet-Imbault, G. Lemineur, B. Ilharreborde, M. C. Ho Ba Tho, and C. L. Benhamou, "Three-dimensional characterization of cortical bone microstructure by microcomputed tomography: validation with ultrasonic and microscopic measurements," J Orthop Sci, vol. 12, pp. 141-8, Mar 2007.
[3]National Osteoporosis Foundation. http://www.nof.org/.
[4]Bureau of National Health Insurance. http://www.nhi.gov.tw/
[5]J. M. Elaine M. Marieb, "Human anatomy " San Francisco Benjamin Cummings, 2003.
[6]P. Moilanen, V. Kilappa, P. H. Nicholson, J. Timonen, and S. Cheng, "Thickness sensitivity of ultrasound velocity in long bone phantoms," Ultrasound Med Biol, vol. 30, pp. 1517-21, Nov 2004.
[7]C. M. Langton, A. V. Ali, C. M. Riggs, G. P. Evans, and W. Bonfield, "A contact method for the assessment of ultrasonic velocity and broadband attenuation in cortical and cancellous bone," Clin Phys Physiol Meas, vol. 11, pp. 243-9, Aug 1990.
[8]L. Serpe and J. Y. Rho, "The nonlinear transition period of broadband ultrasound attenuation as bone density varies," J Biomech, vol. 29, pp. 963-6, Jul 1996.
[9]P. Augat, H. Reeb, and L. E. Claes, "Prediction of fracture load at different skeletal sites by geometric properties of the cortical shell," J Bone Miner Res, vol. 11, pp. 1356-63, Sep 1996.
[10]O. Louis, J. Willnecker, S. Soykens, P. Van den Winkel, and M. Osteaux, "Cortical thickness assessed by peripheral quantitative computed tomography: accuracy evaluated on radius specimens," Osteoporos Int, vol. 5, pp. 446-9, 1995.
[11]S. C. Lee, B. S. Coan, and M. L. Bouxsein, "Tibial ultrasound velocity measured in situ predicts the material properties of tibial cortical bone," Bone, vol. 21, pp. 119-25, Jul 1997.
[12]S. Chaffai, F. Peyrin, S. Nuzzo, R. Porcher, G. Berger, and P. Laugier, "Ultrasonic characterization of human cancellous bone using transmission and backscatter measurements: relationships to density and microstructure," Bone, vol. 30, pp. 229-37, Jan 2002.
[13]M. Pithioux, P. Lasaygues, and P. Chabrand, "An alternative ultrasonic method for measuring the elastic properties of cortical bone," J Biomech, vol. 35, pp. 961-8, Jul 2002.
[14]P. Lasaygues and J. P. Lefebvre, "Cancellous and cortical bone imaging by reflected tomography," Ultrason Imaging, vol. 23, pp. 55-70, Jan 2001.
[15]E. Ouedraogo, P. Lasaygues, J. P. Lefebvre, M. Gindre, M. Talmant, and P. Laugier, "Contrast and velocity ultrasonic tomography of long bones," Ultrason Imaging, vol. 24, pp. 139-60, Jul 2002.
[16]P. Lasaygues, J. P. Lefebvre, and S. Mensah, "High resolution low frequency ultrasonic tomography," Ultrason Imaging, vol. 19, pp. 278-93, Oct 1997.
[17]P. Lasaygues, E. Ouedraogo, J. P. Lefebvre, M. Gindre, M. Talmant, and P. Laugier, "Progress towards in vitro quantitative imaging of human femur using compound quantitative ultrasonic tomography," Phys Med Biol, vol. 50, pp. 2633-49, Jun 7 2005.
[18]P. Lasaygues, "Assessing the cortical thickness of long bone shafts in children, using two-dimensional ultrasonic diffraction tomography," Ultrasound Med Biol, vol. 32, pp. 1215-27, Aug 2006.
[19]J. S. Schreiman, J. J. Gisvold, J. F. Greenleaf, and R. C. Bahn, "Ultrasound transmission computed tomography of the breast," Radiology, vol. 150, pp. 523-30, Feb 1984.
[20]J. F. Greenleaf, J. J. Gisvold, and R. C. Bahn, "Computed transmission ultrasound tomography," Med Prog Technol, vol. 9, pp. 165-70, 1982.
[21]J. F. Greenleaf and R. C. Bahn, "Clinical imaging with transmissive ultrasonic computerized tomography," IEEE Trans Biomed Eng, vol. 28, pp. 177-85, Feb 1981.
[22]D. H. Christopher F. Njeh, Claus C. Gluer, Thomas Fuerst and Harry K. Genant. , "Quantitative ultrasound :assessment of osteoporosis and bone status " London Martin Dunitz, 1999.
[23]Douglas A. Christensen, "Ultrasonic Bioinstrumentation," New York: Wiley, 1988.
[24]P. H. Nicholson, G. Lowet, C. M. Langton, J. Dequeker, and G. Van der Perre, "A comparison of time-domain and frequency-domain approaches to ultrasonic velocity measurement in trabecular bone," Phys Med Biol, vol. 41, pp. 2421-35, Nov 1996.
[25]A. C. Kak and M. Slaney, " Principles of Computerized Tomographic Imaging," New York: IEEE Press, 1988.
[26]K. J. Opielinski and T. Gudra, "Recognition of external object features in gas media using ultrasound transmission tomography," Ultrasonics, vol. 44 Suppl 1, pp. e1069-76, Dec 22 2006.
[27]COMSOL Multiphysics User's Guide.
[28]S. P. Dodd, J. L. Cunningham, A. W. Miles, S. Gheduzzi, and V. F. Humphrey, "Ultrasonic propagation in cortical bone mimics," Phys Med Biol, vol. 51, pp. 4635-47, Sep 21 2006.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top