(3.227.208.0) 您好!臺灣時間:2021/04/18 13:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:彭秋瑩
研究生(外文):Chiu-Ying Peng
論文名稱:探討VEGFR1在口腔癌細胞內的次細胞分佈現象與其所扮演的角色
論文名稱(外文):The study of vascular endothelial growth factor receptor 1 (VEGFR1) subcellular localization and its functional implication in carcinogenesis
指導教授:吳梨華蔡森田蔡森田引用關係
指導教授(外文):Li-Wha WuSen-Tian Tsai
學位類別:碩士
校院名稱:國立成功大學
系所名稱:分子醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:48
中文關鍵詞:口腔癌importin β1nuclear localization signal (NLS)VEGFR1VEGF-A
外文關鍵詞:importin β1nuclear localization signal (NLS)VEGF-AVEGFR1oral cancer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:110
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
血管內皮細胞生長因子受器第一型 (VEGFR1) 原先被認為只表現在內皮細胞、單核球細胞、巨噬細胞、造血幹細胞中,參與調控血管新生、單核球細胞/巨噬細胞與造血幹細胞的爬行到他們受吸引的來源。可是近年來的研究都證實血管內皮細胞生長因子受器第一型也表現在各型各類的癌症中,且能用它的表現量來預測癌症惡性程度與病人的癒後情況。最近研究顯示這個原本認為坐落在細胞膜上的受器,在B細胞慢性淋巴球性白血病(B-CCL)的癌細胞裡被發現在活化的情況下會被細胞吞噬進入核內,與調控基因表現的轉錄因子STAT3結合。因此,本研究目的為探討VEGFR1是如何進入核內的,還有它在癌症的進程中扮演什麼樣的角色。首先,我們利用定點突變(site-directed mutagenesis)與免疫螢光染色探討VEGFR1中一段推測的NLS是否有功能。結果我們確認這段推測的NLS中有會促使細胞質中的蛋白入核,也會與大部分會入核的大蛋白分子都需會用到的核輸入受器(importin)結合,而NLS中的第954個位置的離氨基酸更是有絕對存在的必要。只是全長VEGFR1的入核還需要其他入核訊號的幫忙。利用免疫組織染色發現在口腔癌病人的檢體中, VEGFR1布景會表現於核內,且在組織入侵的前線有表現量較高的趨勢。口腔癌細胞常會大量表現VEGF-A,可是我們發現外加的VEGF-A並不會促使VEGFR1在細胞內的次位置改變。剔除口腔癌細胞株內的VEGFR1後,會抑制癌細胞的生長與爬行能力。最後總結來說,VEGFR1確實含一段有效能的NLS,只是口腔癌細胞核中的VEGFR1有什麼功能、是否具有癒後指標意義,還必須待更進一步研究闡明。
Vascular endothelial growth factor receptor 1 (VEGFR1) is a receptor tyrosine kinase (RTK) predominantly expressed on the plasma membrane of endothelial cells. Recent studies have shown that VEGFR1 is also expressed in several types of human cancer cells, and its expression correlates with cancer progression and predicts the outcome of cancer patients following cancer treatments. Studies in chronic B cell leukemia suggest that VEGFR1 could be internalized from cell membrane and associated with phosphorylated STAT3 in response to VEGF-A stimulation. We hypothesize that VEGFR1 may work in similar fashion like EGFR, which employs activated receptor internalization to act as a transcription mediator in nucleus. We first examined the function of a putative nuclear translocataion signal (NLS) segment within VEGFR1 by site-directed mutagenesis and immunofluorescence (IF) microscopy. Although additional sequence may be required, VEGFR1 indeed harbored a functional NLS segment, in which lysine 954 residue played a dominant role. The nuclear localization of VEGFR1 was in part mediated by its association with importin β1 (impB1), normally required for nuclear transport of proteins. Exogenous VEGF-A, frequently overexpressed in oral cancer cells, had no effect on the subcellular localization of VEGFR1. Knocking down the expression of VEGFR1 decreased the proliferation and migration abilities of oral cancer cells. Nuclear expression of VEGFR1 was also observed in the invasion front of oral cancer specimens. Together, VEGFR1 indeed harbored a functional NLS to enter cell nucleus, the exact function of nuclear VEGFR2 in oral cancer cells and the prognostic value of its expression in nuclei remains to be elucidated.
I. 中文摘要 I
II. Abstract II
III. 誌謝 III
IV. Table of context IV
V. List of figures VI
VI. Abbreviation VII

VII. Introduction
1.1 VEGF-A and angiogenesis 1
1.2 The role of VEGFR1 in angiogenesis 1
1.3 VEGFR1 in cancers 2
1.4 VEGFR1 and oral cancers 3
1.5 Traditional signal transduction pathways of receptor tyrosine kinases (RTK) 4
1.6 RTK internalization 4
1.7 Mechanism of importin-mediated nuclear translocation 5
1.8 Previous studies on VEGFR1 6
VIII. Hypothesis 7
IX. Specific aims 7
X. Materials and methods
2.1 Materials 8
2.2 Primer list 9
2.3 Cell culture 10
2.4 Plasmid constructs 10
2.5 Transient transfection 11
2.6 shRNA knockdown 12
2.7 Immunofluorescence 12
2.8 Immunohistochemistry 13
2.9 Immunoblotting (Western blotting) 13
2.10 Immunoprecipitation 14
2.11 Nuclear-cytosolic fractionation 14
2.12 Proliferation 15
2.13 Wound healing 15
XI. Results
3.1 A stretch of functional NLS, located in the kinase insert domain, is responsible for VEGFR1 nuclear translocation 16
3.2 VEGFR1 utilized importin β1 (impB1) for its nuclear import. 17
3.3 Subcellular localization of VEGFR1 in NIH3T3 cells ectopically expressing VEGFR1, and different cancer cell lines 18
3.4 Additional signal might be also required for full-length VEGFR1 nuclear localization 18
3.5 VEGFR1 specific shRNA clone 632 and 633 could successfully knockdown VEGFR1 in 3T3/flt1, and OC2 but not OECM1 cells 19
3.6 VEGFR1 positively regulated proliferation and migration in oral cancers 19
3.7 VEGFR1 expression was intense at the invasive front of late-stage oral cancer patient specimens 20
XII. Discussion 21
XIII. Reference 23
XIV. Figures 28
XV. Appendix 46
1.Olsson AK, Dimberg A, Kreuger J, Claesson-Welsh L. VEGF receptor signalling - in control of vascular function. Nat Rev Mol Cell Biol 2006;7(5):359-71.
2.Shibuya M. Structure and dual function of vascular endothelial growth factor receptor-1 (Flt-1). Int J Biochem Cell Biol 2001;33(4):409-20.
3.Carmeliet P, Moons L, Luttun A, Vincenti V, Compernolle V, De Mol M, Wu Y, Bono F, Devy L, Beck H, Scholz D, Acker T, DiPalma T, Dewerchin M, Noel A, Stalmans I, Barra A, Blacher S, Vandendriessche T, Ponten A, Eriksson U, Plate KH, Foidart JM, Schaper W, Charnock-Jones DS, Hicklin DJ, Herbert JM, Collen D, Persico MG. Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nat Med 2001;7(5):575-83.
4.Mylona E, Alexandrou P, Giannopoulou I, Liapis G, Sofia M, Keramopoulos A, Nakopoulou L. The prognostic value of vascular endothelial growth factors (VEGFs)-A and -B and their receptor, VEGFR-1, in invasive breast carcinoma. Gynecol Oncol 2007;104(3):557-63.
5.Dales JP, Garcia S, Carpentier S, Andrac L, Ramuz O, Lavaut MN, Allasia C, Bonnier P, Taranger-Charpin C. Prediction of metastasis risk (11 year follow-up) using VEGF-R1, VEGF-R2, Tie-2/Tek and CD105 expression in breast cancer (n=905). Br J Cancer 2004;90(6):1216-21.
6.Wu Y, Hooper AT, Zhong Z, Witte L, Bohlen P, Rafii S, Hicklin DJ. The vascular endothelial growth factor receptor (VEGFR-1) supports growth and survival of human breast carcinoma. Int J Cancer 2006;119(7):1519-29.
7.Bando H, Weich HA, Brokelmann M, Horiguchi S, Funata N, Ogawa T, Toi M. Association between intratumoral free and total VEGF, soluble VEGFR-1, VEGFR-2 and prognosis in breast cancer. Br J Cancer 2005;92(3):553-61.
8.Kato H, Yoshikawa M, Miyazaki T, Nakajima M, Fukai Y, Masuda N, Fukuchi M, Manda R, Tsukada K, Kuwano H. Expression of vascular endothelial growth factor (VEGF) and its receptors (Flt-1 and Flk-1) in esophageal squamous cell carcinoma. Anticancer Res 2002;22(6C):3977-84.
9.Ghanem MA, van Steenbrugge GJ, Sudaryo MK, Mathoera RB, Nijman JM, van der Kwast TH. Expression and prognostic relevance of vascular endothelial growth factor (VEGF) and its receptor (FLT-1) in nephroblastoma. J Clin Pathol 2003;56(2):107-13.
10.Fine BA, Valente PT, Feinstein GI, Dey T. VEGF, flt-1, and KDR/flk-1 as prognostic indicators in endometrial carcinoma. Gynecol Oncol 2000;76(1):33-9.
11.Langer I, Vertongen P, Perret J, Fontaine J, Atassi G, Robberecht P. Expression of vascular endothelial growth factor (VEGF) and VEGF receptors in human neuroblastomas. Med Pediatr Oncol 2000;34(6):386-93.
12.Fragoso R, Pereira T, Wu Y, Zhu Z, Cabecadas J, Dias S. VEGFR-1 (FLT-1) activation modulates acute lymphoblastic leukemia localization and survival within the bone marrow, determining the onset of extramedullary disease. Blood 2006;107(4):1608-16.
13.Vincent L, Jin DK, Karajannis MA, Shido K, Hooper AT, Rashbaum WK, Pytowski B, Wu Y, Hicklin DJ, Zhu Z, Bohlen P, Niesvizky R, Rafii S. Fetal stromal-dependent paracrine and intracrine vascular endothelial growth factor-a/vascular endothelial growth factor receptor-1 signaling promotes proliferation and motility of human primary myeloma cells. Cancer Res 2005;65(8):3185-92.
14.Straume O, Akslen LA. Expresson of vascular endothelial growth factor, its receptors (FLT-1, KDR) and TSP-1 related to microvessel density and patient outcome in vertical growth phase melanomas. Am J Pathol 2001;159(1):223-35.
15.Seto T, Higashiyama M, Funai H, Imamura F, Uematsu K, Seki N, Eguchi K, Yamanaka T, Ichinose Y. Prognostic value of expression of vascular endothelial growth factor and its flt-1 and KDR receptors in stage I non-small-cell lung cancer. Lung Cancer 2006;53(1):91-6.
16.Takahama M, Tsutsumi M, Tsujiuchi T, Kido A, Sakitani H, Iki K, Taniguchi S, Kitamura S, Konishi Y. Expression of vascular endothelial growth factor and its receptors during lung carcinogenesis by N-nitrosobis(2-hydroxypropyl)amine in rats. Mol Carcinog 1999;24(4):287-93.
17.Chung GG, Yoon HH, Zerkowski MP, Ghosh S, Thomas L, Harigopal M, Charette LA, Salem RR, Camp RL, Rimm DL, Burtness BA. Vascular endothelial growth factor, FLT-1, and FLK-1 analysis in a pancreatic cancer tissue microarray. Cancer 2006;106(8):1677-84.
18.Ferrer FA, Miller LJ, Lindquist R, Kowalczyk P, Laudone VP, Albertsen PC, Kreutzer DL. Expression of vascular endothelial growth factor receptors in human prostate cancer. Urology 1999;54(3):567-72.
19.Pallares J, Rojo F, Iriarte J, Morote J, Armadans LI, de Torres I. Study of microvessel density and the expression of the angiogenic factors VEGF, bFGF and the receptors Flt-1 and FLK-1 in benign, premalignant and malignant prostate tissues. Histol Histopathol 2006;21(8):857-65.
20.Yang AD, Camp ER, Fan F, Shen L, Gray MJ, Liu W, Somcio R, Bauer TW, Wu Y, Hicklin DJ, Ellis LM. Vascular endothelial growth factor receptor-1 activation mediates epithelial to mesenchymal transition in human pancreatic carcinoma cells. Cancer Res 2006;66(1):46-51.
21.Fukasawa M, Korc M. Vascular endothelial growth factor-trap suppresses tumorigenicity of multiple pancreatic cancer cell lines. Clin Cancer Res 2004;10(10):3327-32.
22.Kosaka Y, Mimori K, Fukagawa T, Ishikawa K, Etoh T, Katai H, Sano T, Watanabe M, Sasako M, Mori M. Identification of the high-risk group for metastasis of gastric cancer cases by vascular endothelial growth factor receptor-1 overexpression in peripheral blood. Br J Cancer 2007;96(11):1723-8.
23.Drescher D, Moehler M, Gockel I, Frerichs K, Muller A, Dunschede F, Borschitz T, Biesterfeld S, Holtmann M, Wehler T, Teufel A, Herzer K, Fischer T, Berger MR, Junginger T, Galle PR, Schimanski CC. Coexpression of receptor-tyrosine-kinases in gastric adenocarcinoma--a rationale for a molecular targeting strategy? World J Gastroenterol 2007;13(26):3605-9.
24.Sato K, Sasaki R, Ogura Y, Shimoda N, Togashi H, Terada K, Sugiyama T, Kakinuma H, Ogawa O, Kato T. Expression of vascular endothelial growth factor gene and its receptor (flt-1) gene in urinary bladder cancer. Tohoku J Exp Med 1998;185(3):173-84.
25.Wu W, Shu X, Hovsepyan H, Mosteller R.D, and Broek D. VEGF receptorexpressionand signaling in human bladder tumors. Oncogene 2003;22:3361-70.
26.Fan F, Wey JS, McCarty MF, Belcheva A, Liu W, Bauer TW, Somcio RJ, Wu Y, Hooper A, Hicklin DJ, Ellis LM. Expression and function of vascular endothelial growth factor receptor-1 on human colorectal cancer cells. Oncogene 2005;24(16):2647-53.
27.Lesslie DP, Summy JM, Parikh NU, Fan F, Trevino JG, Sawyer TK, Metcalf CA, Shakespeare WC, Hicklin DJ, Ellis LM, Gallick GE. Vascular endothelial growth factor receptor-1 mediates migration of human colorectal carcinoma cells by activation of Src family kinases. Br J Cancer 2006;94(11):1710-7.
28.Inan S, Vatansever S, Celik-Ozenci C, Sanci M, Dicle N, Demir R. Immunolocalizations of VEGF, its receptors flt-1, KDR and TGF-beta's in epithelial ovarian tumors. Histol Histopathol 2006;21(10):1055-64.
29.Department of Health EY, R.O.C., Taiwan Statistics of causes of death. 2008 [cited 2008 June 30]; Available from: http://www.doh.gov.tw/ufile/doc/Chapter%202.pdf
30.Sorkin A, von Zastrow M. Signal transduction and endocytosis: close encounters of many kinds. Nature Reviews of Molecular Cell Biology 2002;3:600-14.
31.Lo HW, Ali-Seyed M, Wu Y, Bartholomeusz G, Hsu SC, Hung MC. Nuclear-cytoplasmic transport of EGFR involves receptor endocytosis, importin beta1 and CRM1. J Cell Biochem 2006;98(6):1570-83.
32.Lo HW, Hung MC. Nuclear EGFR signalling network in cancers: linking EGFR pathway to cell cycle progression, nitric oxide pathway and patient survival. Br J Cancer 2007;96 Suppl:R16-20.
33.Lo HW, Hsu SC, and Hung MC. EGFR signaling pathway in breast cancers: from traditional signal transduction to direct nuclear translocalization. Breast Cancer Research and Treatment 2005;95(3):211-8.
34.Lo HW, Hung MC. Nuclear EGFR signalling network in cancers: linking EGFR pathway to cell cycle progression, nitric oxide pathway and patient survival. British Journal of Cancer 2006;94:184-8.
35.Lange A, Mills RE, Lange CJ, Stewart M, Devine SE, and Corbett AH. Classical nuclear localization signals: definition, function, and interaction with importin a. Journal of Biological Chemistry 2007;282(8):5101-5.
36.Lee YK, Shanafelt TD, Bone ND, Strege AK, Jelinek DF, Kay NE. VEGF receptors on chronic lymphocytic leukemia (CLL) B cells interact with STAT 1 and 3: implication for apoptosis resistance. Leukemia 2005;19(4):513-23.
37.Vincent L, Jin DK, Karajannis MA, Shido K, Hooper AT, Rashbaum,WK, Pytowski B., Wu Y, Hicklin DJ, Zhu Z, Bohlen P, Niesvizky R, and Rafi S. Fetal stromal-dependent paracine and intracrine vascular endothelial growth factor-A/vascular endothelial growth factor receptor-1 signaling promotes proliferation and motility of human primary myeloma cells. Cancer Research 2005;65(8):3185-92.
38.Lin Y-Y. Study of VEGFR1 and VEGFR2 subcellular localization in endothelial and oral cancer cells. Tainan: National Cheng Kung University; 2007.
39.Giri DK, Ali-Seyed M, Li LY, Lee DF, Ling P, Bartholomeusz G, Wang SC, Hung MC. Endosomal transport of ErbB-2: mechanism for nuclear entry of the cell surface receptor. Mol Cell Biol 2005;25(24):11005-18.
40.Lee TH, Seng S, Sekine M, Hinton C, Fu Y, Avraham HK, Avraham S. Vascular endothelial growth factor mediates intracrine survival in human breast carcinoma cells through internally expressed VEGFR1/FLT1. PLoS Med 2007;4(6):e186.
41.Chen YJ, Jin YT, Shieh DB, Tsai ST, Wu LW. Molecular characterization of angiogenic properties of human oral squamous cell carcinoma cells. Oral Oncol 2002;38(7):699-705.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔