(18.206.177.17) 您好!臺灣時間:2021/04/23 04:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:邱雅蘭
研究生(外文):Ya-Lan Chiou
論文名稱:利用光電化學法之閘極掘入氮化鋁鎵/氮化鎵金氧半高速電子遷移率電晶體其特性研究
論文名稱(外文):Gate recessing of AlGaN/GaN HEMT using PEC wet etching
指導教授:李清庭
指導教授(外文):C. T. Lee
學位類別:碩士
校院名稱:國立成功大學
系所名稱:光電科學與工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:50
中文關鍵詞:高速電子遷移率電晶體閘極掘入光電化學法
外文關鍵詞:HEMTsgate recessPEC
相關次數:
  • 被引用被引用:0
  • 點閱點閱:221
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:27
  • 收藏至我的研究室書目清單書目收藏:0
此論文主要提出利用光電化學(Photoelectrochemical,PEC)法對氮化鋁鎵/氮化鎵金氧半高速電子遷移率電晶體(AlGaN/GaN MOS-HEMTs)進行閘極掘入之製程,取代一般常使用的乾式蝕刻,降低試片表面因離子轟擊受損進而影響元件特性。閘極掘入的目的是為了藉由改變閘極位置,改善崩潰電壓值,增加閘極對通道的控制能力。在閘極掘入製程後,又利用光電化學法,直接氧化氮化鋁鎵作為閘極的氧化層,如此可避免氮化鋁鎵表面的污染並降低氧半接面的界面態,使得元件特性更佳。比較金氧半高速電子遷移率電晶體(MOS-HEMTs)和閘極掘入之金氧半高速電子遷移率電晶體(recessed MOS-HEMTs),在電流電壓特性方面,可以發現到,閘極電壓為0V 時,其汲極電流分別為509mA/mm、642mA/mm,當閘極電壓為4V 時,汲極電流的最大值又分別為749mA/mm、924mA/mm。而轉導值最大值分別為78mS/mm、86mS/mm,且在順偏崩潰電壓方面,MOS-HEMTs 和recessed MOS-HEMTs 分別是12V 和16V,可發現閘極掘入後的電晶體轉移電導值與崩潰電壓都有明顯的增加。
在元件低頻雜訊特性方面,得到MOS-HEMTs 和recessed MOSHEMTs
的虎格常數皆大約為10-4 數量級,証明光電化學法進行閘極掘入,
不會增加元件表面缺陷而造成雜訊強度明顯增加。
In the thesis, a photoelectrochemical (PEC) method is proposed and applied in fabricating gate-recessed AlGaN/GaN MOS-HEMTs. We used the PEC wet etching method to replace a generally dry etching method for reducing fewer ion-induced damages on the etched surface. Gate-recess process can change the position of oxide/semiconductor interface to modify the threshold voltage and enhance the gate controllability. After gate-recess process, the PEC oxidation method was used to oxidize AlGaN semiconductor directly as gate dielectric layer of AlGaN/GaN MOS-HEMTs. It can avoid the influence of the original contaminants on the AlGaN surface and passivate the surface states on AlGaN surface.Comparing AlGaN/GaN MOS-HEMTs with recessed AlGaN/GaN MOS-HEMTs, the saturation drain-source current at VGS=0V of MOS-HEMTsand recessed MOS-HEMTs is 509mA/mm and 642mA/mm, respectively. The drain-source current at VGS=4V of MOS-HEMTs and recessed MOS-HEMTs is 749mA/mm and 924mA/mm, respectively. The maximum value of extrinsic transconductance of MOS-HEMTs and recessed MOS-HEMTs is 78mS/mm and 86mS/mm, respectively. The breakdown voltage of MOS-HEMTs and recessed MOS-HEMTs is 12V and 16V, respectively. It can be found that the transconductance and the breakdown voltage of recessed MOS-HEMTs were improved.
According to the low frequency noise results measured in this thesis, the
Hooge’s coefficients of MOS-HEMTs and recessed MOS-HEMTs were
estimated to be∼10−4. It is demonstrated that the PEC etching process would
not induce many damages on AlGaN surface and increase the normalized noise
power densities obviously.
目錄
中文摘要………………………………………………………………………I
英文摘要……………………………………………………………………III
致謝……………………………………………………………………………V
目錄…………………………………………………………………………VI
表目錄………………………………………………………………………IX
圖目錄…………………………………………………………………………X
第一章 簡介 / 1
1.1 氮化鋁鎵/氮化鎵高速電子遷移率電晶體……………………………1
1.2 研究動機………………………………………………………………2
1.3 論文架構 ………………………………………………………………3
第二章 原理 / 7
2.1 氮化鋁鎵氧化蝕刻原理………………………………………………7
2.1-1 原理…………………………………………………………7
2.1-2 實驗架構……………………………………………………9
2.2 氮化鋁鎵/氮化鎵異質結構……………………………………………9
2.2-1 前言 …………………………………………………………9
2.2-2 氮化鋁鎵/氮化鎵薄膜之成長………………………………10
2.2-3 二維電子氣(2DEG)之特性…………………………………11
2.2-4 金氧半高速電子遷移率電晶體(MOS HETs)之特性………12
2.3 閘極掘入原理…………………………………………………13
第三章 製程 / 19
3.1 試片結構………………………………………………………19
3.2 元件製程………………………………………………………19
3.2-1 平台隔離製作(Mesa Isolation) ……………………………19
3.2-2 歐姆接觸(Ohmic contact) …………………………………21
3.2-3 閘極掘入(gate recess) ……………………………………24
3.2-4 氧化層成長(gate oxide growing) …………………………25
3.2-5 閘極製作……………………………………………………25
第四章 量測 / 36
4.1 直流特性量測…………………………………………………36
4.1-1 汲源極電流對汲源極電壓的關係(IDS-VDS)特性…………36
4.1-2 轉移電導對閘源極電壓的關係(gm-VGS)特性……………37
4.1-3 閘極漏電流量測……………………………………………38
4.1-4 低頻雜訊分析………………………………………………38
4.2 高溫直流特性量測……………………………………………39
第五章 結論 / 49
第一章
[1] 張家華, “異質結構AlGaN/GaN金屬接面特性之研究,” 國防大學中正理工學院電子工程研究所碩士論文, 2001.
[2] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W.J. Schaff, and L. F. Eastman, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,” J. Appl. Phys, vol. 85, pp. 3222-3233, Mar. 1999.
[3] R. Dimitrov, M. Murphy, J. Smart, W. Schaff, J. R. Shealy, and L. F. Eastman, “Two-dimensional electron gases in Ga-face and N-face AlGaN/GaN heterostructures grown by plasma-induced molecular beam
exitaxy and Metalorganic chemical vapor deposition on sapphire”, J. Appl. Phys., vol. 87, pp. 3375-3380, Apr. 2000.
[4] H. Morkoc, A. D. Carlo, and R. Cingolani, “GaN-based modulation doped FETs and UV detectors,” Solid-State Electronics, vol. 46, pp. 157-202, Fab. 2002.
[5] O. Ambacher, B. Foutz, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, A. J. Sierakowski, W. J. Schaff, and L. F. Eastman, “Two dimensional electron gases induced by spontaneous and piezoelectric
polarization in undoped AlGaN/GaN heterostructures”, J. Appl. Phys., vol. 87, pp.334-344, Jan. 2000.
[6] I. P. Smorchkova, C. R. Elsass, J. P. Ibbetson, R. Vetury, B. Heying, P. Fini, E. Haus, S. P. DenBaars, J. S. Speck, and U. K. Mishra,“Polarization-induced charge and electron mobility in AlGaN/GaN heterostructures grown by plasma-assisted molecular-beam expitaxy,” J. Appl.
Phys., vol. 86, pp. 4520-4526, Oct. 1999.
[7] F. Sacconi, A. D. Carlo, P. Lugli, and H. Morkoç, ”Spontaneous and piezoelectric polarization effects on the output characteristics of AlGaN/GaN heterojunction modulation doped FETs,” IEEE Trans. Electron Devices, vol.
48, pp. 450-457, Mar. 2001.
[8] L. F. Eastman, V. Tilak, J. Smart, B. M. Green, E. M. Chumbes, R. Dimitrov, H. Kim, O. S. Ambacher, N. Weimann, T. Prunty, M. Murphy, W. J. Schaff, and J. R. Shealy, “Undoped AlGaN/GaN HEMTs for microwave power application,” IEEE Trans. Electron Devices, vol. 48, pp. 479-485, Mar. 2001.
[9] Saito, W., Takada, Y., Kuraguchi, M., Tsuda, K., Omura, I., Ogura, T., and Ohashi, H., “High Breakdown Voltage AlGaN-GaN Power-HEMT Design and High Current Density Switching Behavior,” IEEE Trans. Electron Devices. vol.50, pp. 2528-2531 2003.
[10] Qhalid Fareed, R. S., Hu, X., Tarakji, A., Deng, J., and Gaska, R.,“High-power AlGaN/InGaN/AlGaN/GaN recessed gate heterostructure field-effect transistors,” Appl. Phys. Lett. vol. 86, pp. 143512-1-143512-3, 2005.
[11] R. J. Shul, G. B. McClellan, S. A. Casalnuovo, D. J. Rieger, S. J. Pearton, C. Constantine, C. Barratt, R. F. Karlicek, Jr., C. Tran, and M. Schurman,“Inductively coupled plasma etching of GaN,” Appl. Phys. Lett., vol. 69, pp. 1119-1121, Aug. 1996.
[12] L. H. Huang, and C. T. Lee, “Investigation and Analysis of AlGaN MOS Devices with an Oxidized Layer Grown Using the Photoelectrochemical Oxidation Method,” J. Electrochem. Soc., vol. 154, pp. H862-H866, Oct. 2007.
第二章
[1] C. Youtsey, I. Adesida, and G. Bulman, “Highly anisotropic photoenhanced
wet etching of n-type GaN”, Appl. Phys. Lett., vol. 71, pp. 2151-2153, Oct.
1997.
[2] T. Rotter, D. Mistele, J. Stemmer, F. Fedler, J. Aderhold, J. Graul, V. Schwegler, C. Kirchner, M. Kamp, and M. Heuken“Photoinduced oxide film formation on n-type GaN surfaces using alkaline solutions”, Appl. Phys.
Lett., vol. 76, pp. 3923-3925, Jun. 2000.
[3] E. H. Chen, D. T. Mclnturff, T. P. Chin, M. R. Melloch and J.M.Woodall,“Use of annealed low-temperature grown GaAs as a selective photoetch-stop layer”, Appl. Phys. Lett., vol. 68, pp. 1678-1680, Mar. 1996.
[4] L. H. Huang, and C. T. Lee, “Investigation and Analysis of AlGaN MOS Devices with an Oxidized Layer Grown Using the Photoelectrochemical Oxidation Method,” J. Electrochem. Soc., vol. 154, pp. H862-H866, Oct. 2007.
[5] J. E. Borton, C. Cai and M. I. Nathan, P. Chow, J. M. Van Hove, and A. Wowchak, and H. Morkoc, “Bias-assisted photoelectrochemical etching of p-GaN at 300 K,” Appl. Phys. Lett., vol. 77, pp. 1227-1229, Aug. 2000.
[6] D. K. Schroder, “Semiconductor Material and Device Characterization,” p.339.
[7] K. Itoh, K. Hiramatsu, and H. Amano, “Preparation of AlxGa1-xN/GaN heterostructure by MOVPE,” J. Crys. Growth, vol. 104, pp. 533-538, Jul.1990.
[8] M. A. Khan, M. S. Shur, J. N. Kuzunia, Q. Chen, J. Burm, and W. Schaff,“Temperature activated conductance in GaN/AlGaN heterostructure field effect transistors operating at temperatures up to 300 °C,” Appl. Phys. Lett., vol. 66, pp. 1083-1085, Feb. 1995.
[9] O. Aktas, Z. F. Fan, S. N. Mmohammand, A. E. Botchkarev, and H. Morkoc,“High temperature characteristics of AlGaN/GaN modulation doped field-effect transistors,” Appl. Phys. Lett., vol. 69, pp. 3872-3874, Dec. 1996.
[10] H. Morkoe, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns,“Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies,” J. Appl. Phys., vol. 76, pp. 1363-1398, Aug. 1994.
[11] S. J. Hearne, J. Han, S. R. Lee, J, A. Floro, D. M. Follstaedt, E. Chason, and I. S. T. Tsong, “Brittle-ductile relaxation kinetics of strained AlGaN/GaN
heterostructures,” Appl. Phys. Lett., vol. 76, pp. 1534-1536, Mar. 2000.
[12] T. Takeuchi, T. Detchprohm, M. Iwaya, N. Amano, I. Akasaki, Y. Kaneko, R. Shioda, S. Watanable, T. Hidaka, Y. Yamaoka, and Y. Kaneko,“Improvement of far-field pattern in nitride laser diodes,” Appl. Phys. Lett.,
vol. 75, pp. 2960-2962, Nov. 1999.
[13] K. Lorenz, M. Gonsalves, W. Kim, V. Narayanan, and S.
Mahajan, ”Comparative study of GaN and AlN nucleation layers and their role in growth of GaN on sapphire by metalorganic chemical vapor deposition,” Appl. Phys. Lett., vol. 77, pp. 3391-3393, Nov. 2000.
[14] T. Lei, T. D. Moustakas, R. J. Graham, Y. He, and J. Berkowitz, “Epitaxial growth and characterization of zinc-blende gallium nitride on (001) silicon,”
J. Appl. Phys., vol. 71, pp. 4933-4943, May 1992.
[15] B. Gaffey, L. J. Guido, X. W. Wang, and T. P. Ma, “High-quality oxide/nitride/oxide gate insulator for GaN MIS structures,” IEEE Trans. Elec. Devices, vol. 48, pp. 458-464, Mar. 2001.
第三章
[1] 譚偉文(Wei-WenTan), “ Investigation of Electrical Properties of Photoelectrochemistry Oxide Film Formation on n-type GaN MOSFETs,” 成大微電子所碩士論文, 2005.
[2] P. E. Riley, “Plasma etching of aluminum metallizations for ultralarge scale integrated circuits,” J. Electrochem. Soc., vol. 140, pp. 1518-1522, May. 1993.
[3] S. K. Ghandhi, VLSI fabrication principles, John Wiley & Sons, p. 635, 1994.
[4] S. J. Lee, and C. R. Crowell, “Parasitic source and drain resistance in high-electron-mobility transistor,” Solid-State Electron., vol. 28, pp.659-668, Jul. 1985.
[5] M. E. Lin, Z. Ma, F. Y. Huang, Z. F. Fan, L. H. Allen, and H. Morkoç “Low resistance ohmic contacts on wide band-gap GaN,” Appl. Phys. Lett., vol. 64, pp. 1003-1005, Feb. 1994.
[6] Q. Z. Liu, L. S. Yu, F. Deng, S. S. Lau, Q. Chen, J. W. Yang, and M. A. Khan, “Study of contact formation in AlGaN/GaN heterostructures,” Appl. Phys. Lett., vol. 71, pp. 1658-1660, Sep. 1997.
[7] C. T. Lee, and H. W. Kao, “Long-term thermal stability of Ti/Al/Pt/Au Ohmic contacts to n-type GaN,” Appl. Phys. Lett., vol. 76, pp. 2364-2366, Apr. 2000.
[8] L. H. Huang, and C. T. Lee, “Investigation and Analysis of AlGaN MOS Devices with an Oxidized Layer Grown Using the Photoelectrochemical Oxidation Method,” J. Electrochem. Soc., vol. 154, pp. H862-H866, Oct. 2007.
第四章
[1] S. M. Sze, Semiconductor Devices: Physics and Technology, Wiley, Chichester, 2002, p. 249.
[2] A. T. Chenga, Y. K. Sua, W. C. Laic, and C. H. Huang, “DC characteristics improvement of recessed gate GaN-based HFETs grown by MOCVD,” J. Crys. Growth, vol. 298, pp. 848-851, Jan. 2007.
[3] M. Miyoshi, A. Imanishiy, T. Egawa, H. Ishikawa, K. I. Asai, T. Shibata, M. Tanaka, and O. Oda, “DC Characteristics in High-Quality AlGaN/AlN/GaN High Electron Mobility Transistors Grown on AlN/Sapphire Templates,” Jpn. J. Appl. Phys., vol. 44, pp. 6490-6494, Sep. 2005.
[4] S. Arulkumaran, T. Egaway, L. Selvaraj, and H. Ishikawa, “On the Effects of Gate-Recess Etching in Current-Collapse of Different Cap Layers Grown
AlGaN/GaN High-Electron-Mobility Transistors,” Jpn. J. Appl. Phys., vol. 45, pp. L220-L223, Feb. 2006.
[5] C. Y. Chan, T. C. Lee, S. H. Hsu, L. Chen, and Y. S. Lin, “Impacts of Gate Recess and Passivation on AlGaN/GaN High Electron Mobility Transistors,”Jpn. J. Appl. Phys., vol. 46, pp. 478-484, Feb. 2007.
[6] O. Aktas, Z. F. Fan, S. N. Mohammad, A. E. Botchkarev, and H. Morkoc, “High temperature characteristics of AlGaN/GaN modulation doped field-effect transistors,” Appl. Phys. Lett., vol. 69, pp. 3872-3874, Oct. 1996.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔