(3.230.173.249) 您好!臺灣時間:2021/04/18 07:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:戴川鈞
研究生(外文):Chuan-chun Tai
論文名稱:不同溫度對有機薄膜微結構與電晶體元件電特性的影響研究
論文名稱(外文):Study of temperature effects on thin-film microstructures and electrical properties of organic-based thin-film transistors
指導教授:鄭弘隆
指導教授(外文):Horng-Long Cheng
學位類別:碩士
校院名稱:國立成功大學
系所名稱:光電科學與工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:76
中文關鍵詞:溫度效應五苯有機薄膜電晶體
外文關鍵詞:temperature effectpentaceneorganic thin film transistors
相關次數:
  • 被引用被引用:0
  • 點閱點閱:201
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:36
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究以五苯 (pentacene) 有機薄膜電晶體(organic thin film transistors, OTFTs)元件的電傳輸特性,聚焦於變化量測溫度對元件電性的影響,環境溫度範圍從室溫至400 K。在變�h實驗過程中,我們針對下列因素對元件電特性的影響進行深入研究,包括:系統熱能對分子傳輸參數的影響(包含分子間作用力與分子的再組織能)、不同�h度下存在不同形態的缺陷態位、偏壓應力效應(來自長時間的重覆操作)、退火效應(來自長時間於高溫下造成的結構重排效應)等因素。利用變溫微拉曼光譜與吸收光譜量測對應的五苯薄膜微結構的變化,並量測介電層與有機半導體層間的變溫電壓-電容行為,以獲得在OTFT元件內的缺陷態位與陷阱捕捉電荷過程的資訊。
  實驗結果指出不同的環境溫度對元件電特性影響甚鉅,當�h度從室溫升到361 K左右時,載子遷移率會隨溫度升高而增加,但繼續增加溫度,載子遷移率的增加開始呈現飽和的現象,臨界電壓隨溫度增加而增大,開電流與關電流皆會隨著溫度升高而增加,同時發現,當環境溫度升高,元件電轉移曲線的遲滯效應會變得較明顯,暗指於高溫下產生較多的缺陷態位,將降低載子傳輸效率,搭配變溫電壓-電容量測金屬-二氧化矽-金屬(MIM) 與金屬-二氧化矽-五苯-金屬(MISM)二極體結構,發現MIM二極體的電壓-電容曲線即使在高溫也無遲滯效應,相反地, MISM二極體的電壓-電容曲線隨溫度增加則遲滯效應愈明顯,而,因此建議五苯薄膜本身與五苯╱介電層界面產生的缺陷態位可能主導五苯電晶體在不同溫度下的轉移電特性。額外對元件進行退火與偏壓應力的對比實驗,結果指出退火效應對元件的電特性的影響遠小於溫度效應的影響,而且偏壓應力效應在本實驗中不明顯。拉曼與吸收光譜的實驗結果指出五苯的分子間作用力隨溫度上昇而下降,係歸因於高溫下晶格熱膨漲所致,因為分子間距離增加,不利載子傳輸。綜合而論,於高溫下,我們仍然獲得增強的載子遷移率,因此建議環境提供的熱能仍然主導變�h下的電荷於pentacene電晶體內的轉輸行為。此外,於N型十六氟銅苯二甲藍有機薄膜電晶體元件,我們也獲得類似的實驗結果。
This study investigates the influence of environmental temperature on the electronic characteristics of pentacene-based organic thin-film transistors (OTFTs). The measuring temperature varied from room temperature (RT) up to 400 K. During the measurement processes of OTFTs, the following issues are discussed in detail, including (i) the influence of the thermal energy from measuring environments on the molecular hopping transport parameters, that is, intermolecular interactions and molecular reorganization energy; (ii) the defect states generated from the changing measuring temperature; (iii) long-term gate-bias stress due to continuous and repeated operation of the devices; (iv) annealing effects due to the long period of operation at high temperatures and the subsequent structural rearrangement of pentacene film. The corresponding microstructural changes of pentacene films as a function of temperature were investigated by variable-temperature Raman and absorption spectroscopy. Additionally, we studied the capacitance-voltage behavior, which can give information about mobile charges and trapping processes in the devices.
The results reveal that the measuring temperature has a significant influence on electronic characteristics of OTFT devices. The charge mobilities increased with increasing temperature until 360 K and then became saturated. At the same time, the threshold voltage, output on-current, and off-current all increased with increasing temperature. It was found that the hysteresis effects in transfer curves were enhanced with increasing temperature, thus suggesting that more defect states were generated at high temperature, which then decreased the charge-transport efficiency. From varying temperature capacitance-voltage measurements of metal-silicon dioxide-metal (MIM) and metal-silicon dioxide-pentacene-metal (MISM) diodes, the MIM diodes showed no hysteresis between forward and reverse bias sweeps, even at high temperature. To the contrary, the MISM diodes showed significant hysteresis at higher temperature. The results indicated that the defect states are located in pentacene itself and in the interface between pentacene/dielectric and act as a dominating factor in high-temperature-transfer electrical characteristics of pentacene OTFTs. Additionally, the effects from annealing and gate-bias stress on pentacene OTFTs were not obvious as compared to that of environment temperature. Raman and absorption spectra indicated that the intermolecular interactions between pentacene molecules in films decreased with increasing temperature and are thus unfavorable for charge transport. In summary, we still obtained increased charge mobilities at higher temperatures, thus suggesting the thermal energy from the environment governs the electric transport characteristics in pentacene-based OTFTs. Furthermore, we have obtained similar experimental results in n-type copper hexadecafluorophthalocyanine- based OTFTs.
中文摘要 I
Abstract III
誌謝 V
目次 VII
表目錄 VIII
圖目錄 IX
第1章 前言與理論 1
1.1 前言 1
1.2 研究動機 2
1.3 原理 3
1.3.1 有機薄膜電晶體的基本原理 3
1.3.2 有機半導體載子傳輸模型-變程跳躍 (variable range hopping, VRH) 5
第2章 實驗 8
2.1 有機材料 8
2.2 實驗相關儀器 8
2.3 樣品製作過程 9
2.4 實驗量測方法 10
第3章 結果與討論 11
3.1 變溫量測對五苯電晶體電特性的影響 11
3.1.1 輸出與轉移電特性 11
3.1.2 時間解析的電特性 13
3.1.3 遲滯效應 14
3.2 變溫量測歷程中五苯電晶體電特性的變化原因探討 17
3.2.1 溫度歷程的影響與退火效應 17
3.2.2 電壓偏壓應力效應的影響 18
3.2.3 溫度相關之五苯薄膜微結構分析 19
3.2.3.1 拉曼光譜分析 19
3.2.3.2 紫外-可見光吸收光譜分析 21
3.2.4 溫度相關之電容效應 22
第4章 結論與未來展望 24
4.1 結論 24
4.2 未來展望 25
[1] H. Sirringhaus, N. Tessler, R. H. Friend, Science, ” Integrated Optoelectronic Devices Based on Conjugated Polymers”, Science, 280, 1741, 1998.
[2] Z. L. Li, S. C. Yang, H. F. Meng, Y. S. Chen, Y. Z. Yang, C. H. Liu, S. F. Horng, C. S. Hsu, L. C. Chen, J. P. Hu, R. H. Lee, ” Patterning-free integration of polymer light-emitting diode and polymer transistor”, Appl. Phys. Lett., 84, 3558, 2004.
[3] H. Klauk, D. J. Gundlach, J. A. Nichols, T. N. Jackson, “Pentacene organic thin-film transistors for circuit and display applications”, IEEE Trans Electron Dev., 46, 1258, 1999.
[4] H. E. Katz, “Recent advances in semiconductor performance and printing processes for organic transistor-based electronics”, Chem. Mater., 16, 4748, 2004.
[5] Y.-Y. Lin, D. J. Gundlach, S. Nelson, T. N. Jackson, “Stacked pentacene layer organic thin-film transistors with improved characteristics”, IEEE Electron Device Lett., 18, 606, 1997.
[6] Y. S. Lee, J. H. Park, J. S. Choi, “Electrical characteristics of pentacene based Schottky diodes”, Opt. Mater, 21, 433, 2002.
[7] S. Kuniyoshi, S. Naruge,M. Iizuka, M. Nakamura, K. Kudo, K. Tanaka, “Thermally stimulated current of pentacene schottky diode”, Synth. Met., 137, 895, 2000.
[8] Y. Y. Lin, D. J. Gundlach, T. N. Jackson, S. F. Nelson, “ Pentacene-based organic thin film transistors”, IEEE Trans. Electron Dev., 44, 1325,1997.
[9] J. H. Lee, S. H. Kim, G. H. Kim, S. C. Lim, H. Lee, J. Jang, ”Pentacene thin film transistors fabricated on plastic substrates”, Synth. Met., 139, 445, 2003.
[10] C. D. Dimitrakopoulos, A. R. Brown, A. Pomp, “Molecular beam deposited thin films of pentacene for organic field effect transistor applications”, J. Appl. Phys., 80, 2501, 1996.
[11] H. Klauk, D. J. Gundlach, T. N. Jackson, “Fast organic thin film transistor circuits”, IEEE Electron Dev. Lett., 20, 289, 1999.
[12] Y. L. Loo, T. Someya, K. W. Baldwin, Z. Bao, P. Ho, A. Dodabalapur, “Soft, conformable electrical contacts for organic semiconductors: high-resolution plastic circuits by lamination”, Proceedings of the National Academy of Sciences, 99, 10252, 2002.
[13] J. Kohler, A. J. C. Brouwer, E. J. J. Groenen, J. Schmidt, “Isotropomer selective spectroscopy on pentacene”, J. Amer. Chem. Soc., 120, 1900, 1998.
[14] P. V. Necliudov, M. S. Shur, D. J. Gundlach, T. N. Jackson, “Modeling of organic thin film transistors of different designs”, J. Appl. Phys., 88, 6594, 2000.
[15] P. W. M. Blom, M. J. M. de Jong, M. G. Van Munster, “Electric-field and temperature dependence of the hole mobility in poly(p-phenylenevinylene)”, Phys. Rev. B, 52, R656, 1997.
[16] G. Horowitz, M. E. Hajlaoui, R. Hajlaoui, “Temperature and gate voltage dependence of hole mobility in polycrystalline oligothiophene thin film transistors”, J. Appl. Phys., 87, 4456, 2000.
[17] R. Tecklenburg, G. Passch, S. Scheinert, “Theory of organic field effect transistors”, Adv. Mater., 8, 285, 1998.
[18] K. Waragai, H. Akimichi, S. Hotta, H. Kano, “Charge transport in thin films of semiconductor oligothiophenes”,Phys. Rev. B, 52, 1786, 1994.
[19] Soyoun Jung,a_ Taeksoo Ji, and Vijay K. Varadan, “Temperature sensor using thermal transport properties in the subthreshold regime of an organic thin film transistor”, Appl. Phys. Lett., 90, 062105, 2007.
[20] M. Zhu, G. Liang, T. Cui, K. Varahramyan, “Temperature and field dependent mobility in pentacene-based thin film transistors”, Solid-State Electron., 49, 884, 2005.
[21] T. Sekitani, S. Iba, Y. Kato, T. Someyaa, ”Pentacene field-effect transistors on plastic films operating at high temperature above 100 °C”, Appl. Phys. Lett., 85, 3902, 2004.
[23] Y. Takamatsu, T. Sekitani,T. Someya, “Temperature dependence of Hall effects in organic thin-film transistors on plastic films”, Appl. Phys. Lett., 90, 133516, 2007.
[24] S. F. Nelson, Y. Y. Lin, D.J. Gundlach, T. N. Jackson “Temperature independent transport in hole-mobility pentacene transistors”, Appl. Phys. Lett., 72, 1854, 1998.
[25] M. C. J. M. Vissenberg, M. Matters, “Theory of the field-effect mobility in amorphous organic transistors”, Phys. Rev. B, 57, 12964, 1998.
[26] V. Y. Butko, X. Chi, D. V. Lang,A. P. Ramirez, “Field-effect transistor on pentacene single crystal”, Appl. Phys. Lett., 83, 4773, 2003.
[27] D. Guo, T. Miyadera, S. Ikeda, T. Shimada, K. Saiki, “Analysis of charge transport in a polycrystalline pentacene thin film transistor by temperature and gate bias dependent mobility and conductance, J. Appl. Phys. 102, 023706, 2007.
[28] S. Jung, Z. Yaoa, ” Organic field-effect transistors with single and double pentacene layers“, Appl. Phys. Lett., 86, 083505, 2005.
[29] G. Horowitz, “Organic Field-Effect Transistors”, Adv. Mater., 10, 365, 1998.
[30] 施敏, ”半導體元件物理與製造技術”, 國立交通大學出版社, 2003.
[31] M. Pose, C. E. Swenberg, ”Electronic processies in organic crystals and polymers”, 2nd Edition, 1999.
[32] J. Yamashita, T.Kurosawa, “One of the pioneering works on polaron theory was concerned with computing the probabilities of thermally activated site jumps”, J. Phys. Chem. Sol., 5, 34, 1958.
[33] T. Holstein, “Studies of polaron motion”, Ann. Phys., 8, 325. 1959.
[34] R. J. F. Dalrymple, W. E. Spear, “A comparison of the electronic structure and properties of orthorhombic sulphur and monoclinic selenium”, J. Phys. Chem. Sol., 34, 1655, 1972.
[35] N. F. Mott, “Conduction in non-crystalline materials” , Phil. Mag., 19, 835, 1969.
[36] M. C. J. M. Vissenberg, M. Matters, “Theory of the field-effect mobility in amorphous organic transistors”, Phys. Rev. B, 57, 964, 1998.
[37] R. Schmechel, “Gaussian disorder model for high carrier densities: theoretical aspects and application to experiments”, Phys. Rev. B, 66, 235206, 2002.
[38] Y. Olivier, V. Lemaur, J. L. Bre´das, J. Cornil, “Charge hopping in organic semiconductors: influence of molecular parameters on macroscopic mobilities in model one-dimensional stacks”, J. Phys. Chem. A., 110, 6356, 2006.
[39] H.L. Kwok, “Structural effects on the carrier mobility of organic field-effect transistors”, Thin Solid Films, 516, 1538, 2008.
[40] D. Kawakami, Y. Yasutake, H. Nishizawa, Y. Majima, “Bias stress induced threshold voltage shift in pentacene thin-film transistors”, Jpn. J. Appl. Phys., 45, L1127, 2006
[41] Y. W. Wang, H. L. Cheng, Y. K. Wang, T. H. Hu, J. C. Ho, C. C. Lee, T. F. Lei, C. F. Yeh, ” Influence of measuring environment on the electrical characteristics of pentacene-based thin film transistors ”, Thin Solid Films, 467, 215, 2004.
[42] R. Yea, M. Babab, K. Suzukic, Y. Ohishib, K. Mori, “Effects of O2 and H2O on electrical characteristics of pentacene thin film transistors”, Thin Solid Films, 464, 437, 2004.
[43] G. Gu, M. G. Kane, J. E. Doty, A. H. Firester, “Electron traps and hysteresis in pentacene-based organic thin-film transistors”, Appl. Phys. Lett., 87, 243512, 2005.
[44] D. W. Park, C. A. Lee, K. D. Jung, B. G. Park, H. Shin, J. D. Lee, ”Low hysteresis pentacene thin-film transistors using SiO2/cross-linkedpoly(vinyl alcohol) gate dielectric”, Appl. Phys. Lett., 89, 263507, 2006.
[45] S. C. Lim, S. H. Kim, J. B. Koo, J. H. Lee, C. H. Ku, Y. S. Yang, T. Zyung, “ Hysteresis of pentacene thin-film transistors and inverters with cross-linked poly(4-vinylphenol) gate dielectrics”, Appl. Phys. Lett., 90, 173512, 2007.
[46] K. Ryu, I. Kymissis, V. Bulovic, C. G. Sodini, ” Direct extraction of mobility in pentacene OFETs using C–V and I–V measurements”, IEEE Eelectron Dev. Lett., 26, 716, 2005.
[47] S. E. Fritz, T. W. Kelley, C. D. Frisbie, ”Effect of dielectric roughness on performance of pentacene TFTs and restoration of performance with a polymeric smoothing Layer”, J. Phys. Chem. B. 109, 10574, 2005.
[48] C. A. Lee, D. W. Park, S. H. Jin, I. H. Park, J. D. Lee, B. G. Park, “Hysteresis mechanism and reduction method in the bottom-contact pentacene thin-film transistors with cross-linked poly(vinylalcohol) gate insulator“, Appl. Phys. Lett., 88, 252102, 2006.
[49] K. Volz, J. Koch, B. Kunert, I. Nemeth, W. Stolz, “Influence of annealing on the optical and structural properties of dilute N-containing III/V semiconductor heterostructures”, J. Crystal Growth, 298, 126, 2007.
[50] S. Yoo, W. J. Potscavage Jr., B. Domercq, S. H. Han, T. D. Li, S. C. Jones, R. Szoszkiewicz, D. Levi, E. Riedo, S. R. Marder, B. Kippelen, “Analysis of improved photovoltaic properties of pentacene/C60 organic solar cells: Effects of exciton blocking layer thickness and thermal annealing”, Solid-State Electron., 51, 1367, 2007.
[51] G. T. Chen, S. H. Su, C. C. Hou, M. Yokoyamab, ”Effects of thermal annealing on performance of organic light-emitting diodes”, Journal of The Electrochemical Society, 154, J159, 2007.
[52] J. X. Sun, Student Member, X. L. Zhu, X. M. Yu, H. J. Peng, M. Wong, Senior Member, H. S. Kwok, ”Improving the performance of organic light-emitting diodes containing BCP/LiF/Al by thermal annealing”, J. Display Technology, 2, 2, 2006.
[53] J. H. Ahn, C. Wang, N. E. Widdowson, C. Pearson, M. R. Bryce, M. C. Pettya, ”Thermal annealing of blended-layer organic light-emitting diodes”, J. Appl. Phys. 98, 054508, 2005.
[54] F. Dinelli, M. Murgiaa, F. Biscarini, D.M. De Leeuw, ”Thermal annealing effects on morphology and electrical response in ultrathin film organic transistors”, Synth. Met., 146, 373, 2004.
[55] Z. Achmad, P. Jens, H. Stephan, Z. Wie, J. Frank, A. Udom, R. P. Jurgen, S. Ullrich, N. Dieter, ”Effect of molecular weight and annealing of poly(3-hexylthiophene)s on the performance of organic field-effect transistors”, Advanced Functional Materials, 14, 757, 2004.
[56] S. Choa, J. Yuena, J. Y. Kima, K. Leea, A. J. Heeger, ” Thermal annealing induced enhancement in the performance of polymer field-effect-transistor using poly(3-hexylthiophene) and [6,6]-phenyl C61-butyric acid methyl ester”, Proc. of SPIE, 6336, 63360X-1, 2006.
[57] F. Yakuphanoglua, M. Arslan, ”Determination of thermo-optic coefficient, refractive index, optical dispersion and group velocity parameters of an organic thin film”, Physica B, 393, 304, 2007.
[58] G.D. Sharmaa, Vijay Singh Choudharyb, M.S. Roy,” Effect of annealing on the optical, electrical, and photovoltaic properties of bulk hetero-junction device based on PPAT:TY blend”, Solar Energy Materials & Solar Cells, 91, 275, 2007.
[59] D. Guo, S. Ikeda, K. Saiki, H. Miyazoe, K. Terashima, “Effect of annealing on the mobility and morphology of thermally activated pentacene thin film transistors”, J. Appl. Phys., 99, 094502, 2006.


[60] R. YE, M. BABA, K. Suzuki, Y. Ohishi, K. Mori, “Effect of thermal annealing on morphology of pentacene thin films”, Jpn. J. Appl. Phys., 42, 4473, 2003.
[61] T. Siegrist, C. Kloc, H. J. Sch�圢, B. Batlogg, R. C. Haddon, S. Berg, G. A. Thomas, ”Enhanced physical properties in a pentacene polymorph”, Angew. Chem., 40, 1732, 2001.
[62] C. C. Mattheus, A. B. Dros, J. Baas, A. Meetsma, J. L. de Boer, T. T. M. Palstra,” Polymorphism in pentacene”, Acta Crystallogr., C57, 939, 2001.
[63] T. Siegrist, C. Besnard, S. Haas, M. Schiltz, P. Pattison, D. Chernyshov, B. Batlogg, C. Kloc, ”A polymorph lost and found: the high-temperature crystal structure of pentacene”, Adv. Mater., 10, 1002, 2006.
[64] 梁信偉,“pentacene薄膜表面形態和薄膜多形態之研究”,國立成功大學碩士論文,2007.
[65] T. Jentzsch, H. Juepner, K. W. Brzezinka, A. Lau, “Efficiency of optical second harmonic generation from pentacene films of different morphology and structure”, Thin Solid Films, 315, 273, 1998.
[66] D. Faltermeier, B. Gompf, Martin. Dressel et al., “Optical properties of pentacene thin films and single crystals”, Phys. Rev. B, 73, 125416, 2006.
[67] O. Kwon, V. Coropceanu, N. E. Gruhn, J. C. Durivage, J. G. Laquindanum, H. E. Katz, J. Cornil, and J. L. Br�縴as, “Characterization of the molecular parameters determining charge transport in anthradithiophene”, J. Chem. Phys., 120, 8186, 2004.
[68] S. E. Fritz, T. W. Kelley, and C. D. Frisbie, “Effect of dielectric roughness on performance of pentacene TFTs and restoration of performance with a polymeric smoothing layer”, J. Phys. Chem. B, 109, 10574, 2005.
[69] S. Uemura, A. K. R. Sakaida, T. Kawai, M. Yoshida, S. Hoshino, T. Kodzasa, and T. KamataThe, “Organic FET with poly(peptide) derivatives and poly(methyl-methacrylate) gate dielectric”, Synth. Met., 153, 405, 2005.
[70] V. Coropceanu, J. Cornil, D. A. Filho, Y. Olivier, R. Silbey, J. Br�縴as, “Charge transport in organic semiconductors”, American Chemical Society, 107, 927, 2007.
[71] H. L. Cheng, W. Y. Chou, C. W. Kou, F. C. Tang, Y. W. Wang, “Electric field-induced structural changes in pentacene-based organic thin-film transistors studied by in situ micro-Raman spectroscopy”, Appl. Phys. Lett., 88, 161918, 2006.
[72] H. L. Cheng, W. Y. Chou, C. W. Kuo, Y. S. Mai, F. C. Tang, S. H. Lai, “Studies of polycrystalline pentacene thin-film transistors at the microscopic level”, Proc. of SPIE., 48, 6336, 2006.
[73] J. A. Last, A. C. Hillier, D. E. Hooks, J. B. Maxson, M. D.Ward, “Epitaxially driven assembly of crystalline molecular films on ordered substrates”, Chem. Mater., 10, 422, 1998.
[74] A. Weinstein, R. Zallen, in Light Scattering in Solids IV (Eds: M. Cardona, G. G�刡therodt), Springer, Berlin, p. 500, 1984.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔