跳到主要內容

臺灣博碩士論文加值系統

(3.236.23.193) 您好!臺灣時間:2021/07/24 13:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王信元
研究生(外文):Hsin-Yuan Wang
論文名稱:高分子修飾層對五苯薄膜結構性質與薄膜電晶體電特性的影響研究
論文名稱(外文):Polymeric modification layer effects on thin-film structural and electrical properties of pentacene-based organic thin-film transistors
指導教授:鄭弘隆
指導教授(外文):Horng-Long Cheng
學位類別:碩士
校院名稱:國立成功大學
系所名稱:光電科學與工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:104
中文關鍵詞:高分子絕緣材料五苯有機薄膜電晶體薄膜結構性質
外文關鍵詞:Thin-film structure propertiesPolymeric insulatorsOrganic thin film transistorsPentacene
相關次數:
  • 被引用被引用:0
  • 點閱點閱:119
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究以五苯(Pentacene)為主動層之薄膜結構性質與薄膜電晶體電特性,探討五苯的薄膜結構與電傳輸性質的關係。研究分兩部份,第一部份,研究五苯成長於無機介電層與不同高分子修飾層表面的薄膜結構性質,使用八種高分子絕緣材料,包括polymethylmethacrylate (PMMA)、poly(vinyl alcohol) (PVA)、poly(vinyl pyrrolidone) (PVNP)、polyfluorene (PF)、poly(vinylidene fluoride) (PVDF)、polyimide (PI)、polyethyleneimine (PEI)、與polystyrene (PS)。第二部份,研究高分子絕緣材料修飾不同的二氧化矽基板對五苯有機薄膜電晶體電特性的影響,探討五苯於不同高分子修飾層上的載子傳輸性質。
第一部份:研究不同介電層材料之表面特性對於成長五苯薄膜結構性質的影響。本實驗利用接觸角量測介電層與五苯表面自由能,研究介電層與五苯層間附著力對五苯薄膜結構的影響;利用下列實驗進行五苯薄膜結構分析:原子力顯微鏡觀察表面形態、X-ray繞射量測結晶結構、拉曼光譜分析振動特性與微結構、與吸收光譜量測基態到激發態的電子躍遷性質。結果指出,高分子介電層與五苯的界面附著力與高分子的總表面自由能並無明確關係,然而,高分子非極性項表面自由能則與五苯間的附著力呈正相關﹔五苯成長於不同高分子修飾層表面,呈現多樣化的表面晶粒型態,指出高分子的表面性質對五苯薄膜的初期成長影響甚大,其中,五苯成長於PVNP表面具有最大的晶粒尺度﹔XRD 繞射結果指出五苯成長於PI、PMMA、與PEI表面有較佳的結晶結構﹔拉曼振動光譜分析指出五苯成長於PI、PMMA、PVNP、與PEI有較大的分子間作用力、有較佳的分子微結構、與環境均勻性,而且五苯延基板法線成長(縱向)的結晶尺度愈大,五苯分子間振動耦合能通常也愈大;吸收光譜分析建議這些五苯薄膜有近似的π-π*能隙,成長於PMMA上的五苯薄膜有最大的Davydov 分裂,指出有較大的分子間作用力。綜合上述分析,高分子的表面性質明顯影響五苯成膜機制與薄膜結構,其中又以PMMA較適合成長五苯薄膜,可獲得最佳的結晶結構、較強的分子間作用力、以及較好的薄膜均勻性。
第二部份:利用高分子絕緣材料修飾不同表面特性的二氧化矽介電層表面,並製作五苯薄膜電晶體元件。當使用高分子材料修飾較粗糙的二氧化矽表面,五苯薄膜電晶體有較佳的載子傳輸效率。分析五苯薄膜縱向結晶結構、表面晶粒大小、分子間振動耦合能、與高分子/五苯界面間的附著力,並無法完全解釋五苯薄膜結構與載子傳輸的相關性。吾人進一步發現高分子修飾層的絕緣效果明顯影響五苯電晶體的電傳輸特性,因此建議當製作有機薄膜電晶體時,不同特性的介電層基板需搭配適合的高分子絕緣材料,如PS適合修飾較平坦的二氧化矽表面,PVNP則可用於修飾較粗糙的二氧化矽表面,應用此概念,吾人己經成功研製高性能的五苯薄膜電晶體,使用PVNP當介電修飾層,場效載子遷移率可達1∼2 cm2/Vs。
In this study, the structural and electronic transport properties of polycrystalline pentacene thin-films grown on various gate dielectric surfaces, including inorganic and polymeric insulators, were investigated using organic thin films transistors (OTFTS) with top contact configuration. The study was divided into two parts; in the first part we studied the structural properties of a series of pentacene films grown on inorganic and polymeric insulator surfaces. The polymeric insulator was used as a modification layer upon silicon dioxide (SiO2), including polymethylmethacrylate (PMMA), poly(vinyl alcohol) (PVA), poly(vinyl pyrrolidone) (PVNP), polyfluorene (PF), poly(vinylidene fluoride) (PVDF), polyimide (PI), polyethyleneimine (PEI), and polystyrene (PS). For the second part of this study we investigated the influence of these polymeric modification layers on the electronic characteristics of pentacene-based OTFT devices.
Part I: The influence of surface properties of various gate dielectric surfaces on the surface morphology, crystal structure, surface free energy, molecular vibrational characteristics and microstructure, as well as π-π* electronic transitions of a series of polycrystalline pentacene films have been investigated using atomic force microscopy (AFM), X-ray diffraction (XRD), contact angle meter, Raman spectroscopy, and absorption spectroscopy. We found that the interfacial adhesive force between the pentacene layer and the dielectric surface are independent of the total surface energy of polymeric surfaces, but dependent on the dispersion force components of polymeric surface free energy. When pentacene was grown on different polymeric surfaces, the pentacene films exhibited variety grainy texture morphology. Among the, these morphologies, pentacene film on PVNP has the largest grain size. We therefore suggest that the polymeric surface properties have a great influence on the first stage of pentacene growth. XRD results indicated the pentacene films on PI, PMMA, and PEI have better crystal quality than that on other polymeric surfaces. Raman analysis results indicated that the pentacene films on PI, PMMA, PVNP, and PEI have large intermolecular coupling energy (w1) and better film homogeneity. Furthermore, we observed a positive relationship between the w1 and the crystal quality along the vertical direction of substrate of these pentacene films on various surfaces. Analysis of the absorption spectrum indicated that these pentacene films have a similar value as the π-π* gap. However, pentacene film on PMMA has the largest Davydov splitting, thus stronger intermolecular interactions. When compared to the pentacene films on other dielectric surfaces, we suggest that the film on PMMA could have superior carrier transport properties due to better crystal quality, larger intermolecular interactions, and homogeneous microstructure.
Part 2: The pentacene films with thicknesses of 600 A were grown on polymeric buffer layers, which deposited upon the SiO2 dielectrics with different surface properties, and the corresponding pentacene-based OTFTs were studied. When the polymeric insulators modified the rough SiO2 surface, the corresponding pentacene-based OTFTs showed better field-effect mobilities (μ) as compared to that on a smooth SiO2 surface. We could not observe clear relationships between the �� and the crystal quality, grain size, w1, and interfacial adhesive force of pentacene on the polymeric surfaces. Moreover, we found that the insulation ability of these polymeric insulators play an important role in the electronic transport properties of pentacene-based OTFTs. To make the OTFTs with a polymeric modification layer upon gate dielectrics, the polymeric properties should be considered on a case by case basis for different surface characteristics of gate dielectrics. For example, the PS suit modifies smooth SiO2 surfaces and the PVNP modifies rough SiO2 surfaces, thus improved charge transport efficiency of pentacene-based OTFTs were obtained. Based on the concepts, we have successfully fabricated pentacene-based OTFTs with a high mobility up to 1-2 cm2/Vs.
中文摘要 ..............................................I
Abstract ..............................................IV
誌謝 ..............................................VII
目次 ..............................................VIII
表目錄 ................................................XI
圖目錄 ................................................XII
第 1 章 有機薄膜電晶體簡介 ..............................1
1-1 前言 ................................................1
1-2 有機半導體傳輸機制 .............................3
1-3 有機薄膜電晶體概論 .............................4
1-3-1 有機薄膜電晶體基本結構 ....................4
1-3-2 有機薄膜電晶體操作原理 ....................5
1-3-3 有機薄膜電晶體基本電特性 ....................6
1-4 本論文研究目的 ......................................8
第 2 章 實驗方法與分析工具 .............................14
2-1 實驗材料 ......................................14
2-1-1 有機半導體材料 .............................14
2-1-2 二氧化矽絕緣材料 .............................14
2-1-3 高分子絕緣材料 .............................15
2-2 元件製程 ......................................16
2-2-1 基板清洗 ......................................16
2-2-2 旋轉塗佈 ......................................16
2-2-3 熱蒸鍍成長五苯與金屬電極 ....................17
2-3 分析工具 ......................................17
2-3-1 接觸角 ......................................18
2-3-2 原子力顯微鏡 ......................................19
2-3-3 X-ray薄膜繞射儀 .............................20
2-3-4 拉曼散射量測系統 .............................21
2-3-5 紫外光-可見光吸收光譜儀 ....................23
2-3-6 電性分析 ......................................24
第 3 章 高分子修飾層表面特性對於五苯有機薄膜成長之影響..34
3-1 前言 ...............................................34
3-2 實驗方法 ......................................36
3-2-1 元件材料 ......................................36
3-2-2 元件製作 ......................................36
3-2-3 分析工具 ......................................36
3-3 高分子修飾層與五苯有機薄膜特性分析 ...........37
3-3-1 表面能量測分析 .............................37
3-3-2 原子力顯微鏡結果與分析 ....................39
3-3-3 X-ray繞射分析 .............................41
3-3-4 拉曼散射光譜量測與分析 ....................43
3-3-5 紫外-可見光吸收光譜分析 ....................47
3-4 綜合討論 ......................................49
第 4 章 探討高分子修飾層對五苯有機薄膜電晶體電特性影響 ..79
4-1 前言 ...............................................79
4-2 實驗方法 ......................................81
4-2-1 元件材料 ......................................81
4-2-2 元件製作 ......................................81
4-2-3 分析工具 ......................................82
4-3 五苯有機薄膜電晶體電特性分析 ....................82
4-3-1 電性量測分析 ......................................82
4-3-2 薄膜結構與電性關係探討 ....................83
4-3-3 遲滯效應 ......................................85
4-4 綜合討論 ......................................86
第 5 章 總結與未來展望 .............................97
參考文獻 ...............................................99
[1] C. K. Chiang, C. R. Fincher, Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau, and A. G. MacDiarmid, “Electrical conductivity in doped polyacetylene”, Phys. Rev. Lett., 39, 1098, 1977.
[2] F. Garnier, R. Hajlaoui, A. Yassar, and P. Srivastava, “All-polymer field-effect transistor realized by printing techniques”, Science, 265, 1684, 1994.
[3] C. D. Dimitrakopoulos, and P. R. L. Malenfant, “Organic thin film transistors for large area electronics”, Adv. Mater., 14, 99, 2002.
[4] M. G. Kane, J. Campi, M. S. Hammond, F. P. Cuomo, B. Greening, C. D. Sheraw, J. A. Nichols, D. J. Gundlach, J. R. Huang, C. C. Kuo, L. Jia, H. Klauk, and T. N. Jackson, “Analog and digital circuits using organic thin-film transistors on polyester substrates”, IEEE Electron Device Lett., 21, 534, 2000.
[5] H. Sirringhaus, N. Tessler, and R. H. Friend, “Integrated optoelectronic devices based on conjugated polymers”, Science, 280, 1741, 1998.
[6] C. J. Drury, C. M. J. Mutsaers, C. M. Hart, M. Matters, and D. M. de Leeuw, “Low-cost all-polymer integrated circuits”, Appl. Phys. Lett., 73, 108, 1998.
[7] G. H. Gelinck, T. C. T. Geuns, and D. M. de Leeuw, “High-performance all-polymer integrated circuits”, Appl. Phys. Lett., 77, 1487, 2000.
[8] B. Crone, A. Dodabalapur, Y. Y. Lin, R. W. Filas, Z. Bao, A. LaDuca, R. Sarpeshkar, H. E. Katz, and W. Li, “Large-scale complementary integrated circuits based on organic transistors”, Nature, 403, 521, 2000.
[9] J. E. Lilienfeld, US Patenet, 1 745 175, 1930.
[10] L. S. Mende, A. Fechtenkotter, K. Mullen, E. Moons, R. H. Friend, and J. D. MacKenzie, “Self-organized discotic liquid crystals for high-efficiency organic photovoltaics”, Science, 293, 1119, 2001.
[11] C. W. Tang, and S. A. VanSlyke, “Organic electroluminescent diodes”, Appl. Phys. Lett., 51, 913, 1987.
[12] J. H. Burroughes, D. D. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burn, and A. B. Holmes, “Light-emitting diodes based on conjugated polymers”, Nature, 347, 539, 1990.
[13] F. Ebisawa, T. Kurokawa, and S. Nara, “Electrical properties of polyacetylene/polysiloxane interface”, J. Appl. Phys., 54, 3255, 1983.
[14] A. Tsumura, H. Koezuka, and T. Ando, “Macromolecular electronic device: field-effect transistor with a polythiophene thin film”, Appl. Phys. Lett., 49, 121, 1986.
[15] H. Antoniadis, M. A. Abkowitz, J. A. Osahemi, S. A. Jenekhe, and M. Stolka, “Generation and drift of photocarriers in a conjugated ladder polymer”, Synth. Met., 60, 149, 1993.
[16] Q. Pei, G. Yu, C. Zhang, Y. Yang, and A. J. Heeger, “Polymer light-emitting electrochemical cells”, Science, 269, 1086, 1995.
[17] W. Riess, S. Karg, V. Dyakonov, M. Meier, and M. Schwoerer, “Electroluminescence and photovoltaic effect in PPV schottky diodes”, J. Lumine., 60, 906, 1994.
[18] L. Zhou, A. Wanga, S. C. Wu, J. Sun, S. Park, and T. N. Jackson, “All-organic active matrix flexible display”, Appl. Phys. Lett., 88, 083502, 2006.
[19] V. C. Sundar, J. Zaumseil, V. Podzorov, E. Menard, R. L. Willett, T. Someya, M. E. Gershenson, and J. A. Rogers, “Elastomeric transistor stamps: reversible probing of charge transport in organic crystals”, Science, 303, 1644, 2004.
[20] W. Y. Chou, C. W. Kuo, H. L. Cheng, Y. R. Chen, F. C. Tang, F. Y. Yang, D. Y. Shu, and C. C. Liao, “Effect of surface free energy in gate dielectric in pentacene thin-film transistors”, Appl. Phys. Lett., 89, 112126, 2006.
[21] D. J. Gundlach, Y. Y. Lin, T. N. Jackson, S. F. Nelson, and D. G. Schlom, “Pentacene organic thin-film transistors-molecular ordering and mobility”, IEEE Electron Device Lett., 18, 87, 1997.
[22] F. Barbe, and C. R. Westgate, “Surface state parameters of metal-free phthalocyanine single crystals”, J. Phys. Chem. Solids, 31, 2679, 1970.
[23] M. L. Petrova, L. D. Rozenshtein, and F. T. Tela, Sov. Phys.-Solid State, 12, 961, 1970.
[24] F. Ebisawa, T. Kurokawa, and S. Nara, “Electrical properties of polyacetylene/polysiloxane interface”, J. Appl. Phys., 54, 3255, 1983.
[25] H. Koezuka, A. Tsumura, and T. Ando,“Field-effect transistor with polythiophene thin film”, Synth. Met., 18, 699, 1987.
[26] A.Tsumura, H. Koezuka, and Y. Ando, “Polythiophene field-effect transistor: Its characteristics and operation mechanism”, Synth. Met., 25, 11, 1988.
[27] 施敏, “半導體元件物理與製造技術”, 國立交通大學出版社, 286, 2003.
[28] H. L. Cheng, W. Y. Chou, L. R. Chang, and Y. S. Mai, “Influence of molecular structure and microstructure on device performance of polycrystalline pentacene thin-film transistors”, Appl. Phys. Lett., 90, 171926, 2007.
[29] W. Y. Chou, and H. L. Cheng, “An orientation-controlled pentacene film aligned by photoaligned polyimide for organic thin-film transistor applications”, Adv. Funct. Meter., 14, 811, 2004.
[30] C. Kim, A. Facchetti, and T. J. Marks, “Gate dielectric microstructural control of pentacene film growth mode and Field-Effect Transistor Performance”, Adv. Mater., 19, 2561, 2007.
[31] M. H. Yoon, C. Kim, A. Facchetti, and T. J. Marks, “Gate dielectric chemical structure-organic field-effect transistor performance correlations for electron, hole, and ambipolar organic semiconductors”, J. Am. Chem. Soc., 128, 12851, 2006.
[32] Y. Jang, D. H. Kim, Y. D. Park, J. H. Cho, M. Hwang, and K. Choa, ”Low-voltage and high-field-effect mobility organic transistors with a polymer insulator”, Appl. Phys. Lett., 88, 072101, 2006.
[33] R. Ruiz, B. Nickel, N. Koch, L. Feldman, R. Haglund, A. Kahn, and G. Scoles, “Pentacene ultrathin film formation on reduced and oxidized Si surfaces”, Phys. Rev. B. 67, 125406, 2003.
[34] D. W. V. Krevelen, “Properties of polymers”, Elsevier Scientific, New York, 43, 1976.
[35] L. F. Drummy, and D. C. Martin, “Thickness-driven orthorhombic to triclinic phase transformation in pentacene thin films”, Adv. Mater., 17, 903, 2005.
[36] T. M. K. Nedungadi, “Conical refraction in naphthalene crystals”, Proc.of Indian Acad. Sci., 14, 221, 1941.
[37] L. Colangeli, V. Mennella, G. A. Baratta, E. Bussoletti, and G. Strazzulla, “Raman and infrared spectra of polycyclic aromatic hydrocarbon molecules of possible astrophysical interest”, Astrophys. J., 396. 369, 1992.
[38] Y. Y. Lin, D. J. Gundlach, S. F. Nelson, and T. N. Jackson, “Pentacene-based organic thin-film transistors”, IEEE Trans. Electron Devices, 44, 1325, 1997.
[39] G. Horowitz, “Tunneling Current in Polycrystalline Organic Thin-Film Transistors”, Adv. Funct. Mater., 13, 53, 2003.
[40] L. Torsi, A. Dodabalapur, L. J. Rothberg, A. W. P. Fung, and H. E. Katz, “Intrinsic transport properties and performance limits of organic field-effect transistors “, Science, 272, 1462, 1996.
[41] M. Shtein, J. Mapel, J. B. Benziger, and S. R. Forrest, “Effects of film morphology and gate dielectric surface preparation on the electrical characteristics of organic vapor phase deposited pentacene thin-film transistors”, Appl. Phys. Lett., 81, 268, 2002.
[42] D. Knipp, R. A. Street, A. Volkel, and J. Ho, “Pentacene thin film transistors on inorganic dielectrics: Morphology, structural properties, and electronic transport”, J. Appl. Phys., 93, 347, 2003.
[43] S. Verlaak, V. Arkhipov, and P. Heremans, “Modeling of transport in polycrystalline organic semiconductor films”, Appl. Phys. Lett., 82, 745, 2003.
[44] J. A. Last, A. C. Hillier, D. E. Hooks, J. B. Maxson, and M. D.Ward, “Epitaxially driven assembly of crystalline molecular films on ordered substrates”, Chem. Mater., 10, 422, 1998.
[45] F. J. Meyer, Z. Heringdorf, M. C. Reuter, and R. M. Tromp, “Growth dynamics of pentacene thin films”, Nature, 412, 517, 2001.
[46] J. H. Kang, and X. Y. Zhu, “Pi-stacked pentacene thin films grown on Au(111)”, Appl. Phys. Lett., 82, 3248, 2003.
[47] T. B. Singh, F. Meghdadi, S. Gunes, N. Marjanovic, G. Horowitz, P. Lang, S. Bauer, and N. S. Sariciftci, “High-performance ambipolar pentacene organic field-effect transistors on poly(vinyl alcohol) organic gate dielectric”, Adv. Mater., 17, 2315, 2005.
[48] S. Lee, B. Koo, J. Shin, E. Lee, H. Park, and H. Kim, “Effects of hydroxyl groups in polymeric dielectrics on organic transistor performance”, Appl. Phys. Lett., 88, 162109, 2006.
[49] Y. Jang, J. H. Cho, D. H. Kim, Y. D. Park, M. Hwang, and K. Cho, “Effects of the permanent dipoles of self-assembled monolayer-treated insulator surfaces on the field-effect mobility of a pentacene thin-film transistor”, Appl. Phys. Lett., 90, 132104, 2007.
[50] H. L. Cheng, Y. S. Mai, W. Y. Chou, L. R. Chang, and X. W. Liang, “Thickness-dependent structural evolutions and growth models in relation to carrier transport properties in polycrystalline pentacene thin films”, Adv. Funct. Mater., 17, 3639, 2007.
[51] T. Minakata, H. Imai, M. Ozaki, and K. Saco, “Structural studies on highly ordered and highly conductive thin films of pentacene”, J. Appl. Phys., 72, 5220, 1992.
[52] C. C. Mattheus, G. A. de Wijs, R. A. de Groot, and T. T. M. Palstram, “Modeling the polymorphism of pentacene”, J. Am. Chem. Soc., 125, 6323, 2003.
[53] S. E. Fritz, S. M. Martin, C. D. Frisbie, M. D. Ward, and M. F. Toney, “Structural characterization of a pentacene monolayer on an amorphous SiO2 substrate with grazing incidence X-ray diffraction”, J. Am. Chem. Soc., 126, 4084, 2004.
[54] T. Jentzsch, H. J. Juepner, K. W. Brzezinka, and A. Lau, “Efficiency of optical second harmonic generation from pentacene films of different morphology and structure”, Thin Solid Films, 315, 273, 1998.
[55] D. Faltermeier, B. Gompf, M. Dressel, A. K. Tripathi, and J. Pflaum, “Optical properties of pentacene thin films and single crystals”, Phys. Rev. B, 74, 125416, 2006.
[56] O. Kwon, V. Coropceanu, N. E. Gruhn, J. C. Durivage, J. G. Laquindanum, H. E. Katz, J. Cornil, and J. L. Bredas, “Characterization of the molecular parameters determining charge transport in anthradithiophene”, J. Chem. Phys., 120, 8186, 2004.
[57] H. L. Cheng, W. Y. Chou, C. W. Kou, F. C. Tang, and Y. W. Wang, “Electric field-induced structural changes in pentacene-based organic thin-film transistors studied by in situ micro-Raman spectroscopy”, Appl. Phys. Lett., 88, 161918, 2006.
[58] H. L. Cheng, W. Y. Chou, C. W. Kuo, Y. S. Mai, F. C. Tang, and S. H. Lai, “Studies of polycrystalline pentacene thin-film transistors at the microscopic level”, Proc. of SPIE., 48, 6336, 2006.
[59] S. Steudel, S. D. Vusser, S. D. Jonge, D. Janssen, S. Verlaak, J. Genoe, and P. Heremans, “Influence of the dielectric roughness on the performance of pentacene transistors”, Appl. Phys. Lett., 85, 4400, 2004.
[60] S. E. Fritz, T. W. Kelley, and C. D. Frisbie, “Effect of dielectric roughness on performance of pentacene TFTs and restoration of performance with a polymeric smoothing layer”, J. Phys. Chem. B, 109, 10574, 2005.
[61] G. Gu, M. G. Kane, J. E. Doty, and A. H. Firester, “Electron traps and hysteresis in pentacene-based organic thin-film transistors”, Appl. Phys. Lett., 87, 243512, 2005.
[62] H. E. Katz, X. M. Hong, and A. Dodabalapur, “Organic field-effect tansistors with polarizable gate insulators”, J. Appl. Phys., 91, 1572, 2002.
[63] S. Uemura, A. K. R. Sakaida, T. Kawai, M. Yoshida, S. Hoshino, T. Kodzasa, and T. KamataThe, “Organic FET with poly(peptide) derivatives and poly(methyl-methacrylate) gate dielectric”, Synth. Met., 153, 405, 2005.
[64] V. Coropceanu, J. Cornil, D. A. Filho, Y. Olivier, R. Silbey, and J. Bredas, “Charge transport in organic semiconductors”, American Chemical Society, 107, 927, 2007.
[65] 楊朝宇, “介電層表面特性對有機薄膜電晶體的電性影響研究”,國立成功大學光電所碩士論文, 2007.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊