跳到主要內容

臺灣博碩士論文加值系統

(3.235.227.117) 您好!臺灣時間:2021/07/28 01:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡守軒
研究生(外文):Shou-Hsuan Tsai
論文名稱:模板輔助奈米球微影術製程奈米結構之研究
論文名稱(外文):Fabrication of Nanostructure with Template-Assisted Nanosphere Lithography
指導教授:張允崇
指導教授(外文):Yun-Chorng Chang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:光電科學與工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:68
中文關鍵詞:奈米球微影奈米球
外文關鍵詞:nanospherenanosphere lithography
相關次數:
  • 被引用被引用:2
  • 點閱點閱:182
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文的研究包括奈米球微影術的製程改進,以及新的模板輔助奈米球微影術的製程開發。奈米球微影術利用奈米球自組裝成單層六方最密堆積的排列以為遮罩,在基板上做出有序的奈米金屬點陣列。經本實驗室幾年的發展已經可以在矽、玻璃等不同基板上排列面積30 mm × 15 mm 的單層奈米球層。但是此單層奈米球形成六方最密堆積的排列後並不如預期可以當作遮罩一直困擾我們。本研究經由掃描式電子顯微鏡的輔助,發現金屬在蒸鍍過奈米球層時被製程中所添加的界面活性劑阻擋,進一步研究發現經由加溫、氧電漿可以將界面活性劑移除,而可以成功在基板上製作出面積20μm × 20μm 的金屬點陣列。
本論文也進一步的研究模板輔助奈米球微影術製程,研究如何將此奈米金屬結構選擇性地製作在特定的物理溝槽結構之中。製程的開發首先利用黃光微影製作有高低差的溝槽圖樣,再將單層奈米球排入溝槽之中。我們就排列的過程中許多影響因素,如溝槽深度、奈米球溶液的濃度及奈米球自組裝儀器的可調變參數等進行系統性的研究,找出最適當的排列參數。再進一步對球體進行反應式離子蝕刻,將球體適度縮小後,再以此縮小後的奈米球為遮罩成功製作出有序的金屬洞陣列。
模板輔助奈米球微影術的開發,由於接下來反應式離子蝕刻機台的限制,製程開發因而受到延誤。因此需開發新的製程,以克服反應式離子蝕刻機台的限制,相信可以開發完成後可以應用在許多光電元件上,使其效率可以更有效地提升。
In this thesis, the improvement of nanosphere lithography (NSL) and the template-assisted nanosphere lithography were both reported. Nanosphere lithography utilizes one single layer of close-packed nanosphere arrays as a shadow mask to fabricate periodic nanostructure on top of different substrates and has been developed in our group for several years. Large area (30 mm × 15 mm) consists of one single layer of nanosphere arrays can be fabricated. However, we have difficulties to deposit metal through this single layer of nanosphere arrays. In this research, the residue of surfactant located between spheres was identified to be the origin of this problem with the help from scanning electron microscopy. By annealing in high temperature or treating with oxygen plasma, the residue can be effectively removed and large area (20μm × 20μm ) of metallic nanoparticles arrays can be fabricated.
Template-assisted nanosphere lithography was also developed in this research. Nanosphere arrays were fabricated inside the photolithography-fabricated patterns. The effects of various parameters were studied and optimized to fabricate a single layer of nanosphere arrays. The arrays were subsequently treated with reactive ion etching (RIE) to slightly reduced the size of the sphere. After depositing metal through the remaining nanosphere arrays, large area of periodic nano-hole arrays can be fabricated. However, the limitation of the RIE using a metallic hard mask has delayed further developments of the template-assisted nanosphere lithography. Therefore, modification of the process is required to avoid the metallic hard mask. We believe that template-assisted nanosphere lithography can be applied in several important optoelectronic devices and advanced their device performance.
中文摘要 I
英文摘要 III
誌謝 V
目錄 VI
本文目錄 VII
表目錄 X
圖目錄 X
第一章 簡介
1-1 奈米科技與製程技術 1
1-1.1 奈米科技 1
1-1.2 奈米製程技術 2
1-2 奈米球的運用 3
1-2.1奈米球自組裝排列機制 3
1-2.2 奈米球體的排列 4
1-2.3奈米球微影 5
1-3 光子晶體 12
1-4 表面電漿共振效應 14
1-4.1 侷域性表面電漿共振 16
1-4.2 奈米金屬結構的共振頻譜 16
1-5 研究動機 19

第二章 實驗器材及實驗流程 20
2-1 實驗流程 20
2-2 儀器架設及藥品 21
2-2.1 奈米球溶液 21
2-2.2 Capping method實驗架設及運作 21
2-2.3 Convective self-assembly 實驗架設及運作 22
2-3 製程儀器 25
2-3.1 光罩對準儀 25
2-3.2 真空熱蒸鍍機 26
2-3.3 反應式離子蝕刻機 27
2-3.4 UV Ozone cleaner 27
2-4 量測儀器 29
2-4.1 掃描式電子顯微鏡 29
2-4.2 原子力顯微鏡 30
2-4.3 紫外線/可見光分光光譜儀 30

第三章 奈米球微影製程及其應用 31
3-1 奈米球層排列 31
3-1.1基板準備 31
3-1.2排列奈米球層的相關參數與排列情況 32
3-1.3 奈米球微影術 35
3-1.4 奈米球微影術所遇到的問題 35
3-1.5 奈米球微影術的困難排除 36
3-2 奈米金屬結構的表面電漿共振頻率 41
3-3 結論 43

第四章 模板輔助奈米球微影術製程奈米結構之研究 44
4-1 溝槽的製作 44
4-2 溝槽中排入奈米球的參數 46
4-2.1 溝槽深度的影響 46
4-2.2 spreader拖曳方向的影響 48
4-2.3 spreader速度與高度的影響 50
4-2.4 奈米球濃度的影響 53
4-2.5 其他影響因素 54
4-3 溝槽中奈米球層的後續處理 56
4-3.1 反應式離子蝕刻 56
4-3.2 金屬遮罩的選擇 59
4-3.3 金屬模板的製作以及所製作出來的金屬點陣列59
4-4 結論 62

第五章 結論及未來展望 63
5-1結論 63
5-2未來展望 65

參考論文 66
[1] 劉仲明,郭東瀛,“競逐原子世界---奈米技術與產業發展”經濟部工業局(2002)

[2] D.A.Carder, A.Markwitz, H.Baumann, J.Kennedy,” Self-assembled germanium nanostructures formed using electron-beam annealing” Current Applied Physics , 3-4, 276-279 (2008)

[3] Rémi Longtin, Christian Fauteux, Louis-Philippe Carignan,“Laser-assisted synthesis of carbon nanofibers: From arrays to thin films and coatings”,Surface & Coatings Technology. 12, 2661-2669 (2008)

[4] Joshi, RK; Yoshimura, M; Chin, “Electrochemical growth of Pd for the synthesis of multiwall carbon nanotubes”, Journal of Physical Chemistry C. 6, 1857-1864 (2008)

[5] L. Radonjic´ A M. Todorovic´ A J. Miladinovic,” Structural evolution of nanostructured barium titanate thin film sol–gel derived”,JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY (2008)

[6] An-Jen Cheng ,Yonhua Tzeng ,Yi Zhou ,Minseo Park , Tsung-hsueh Wu,“Thermal chemical vapor deposition growth of zinc oxide nanostructures for dye-sensitized solar cell fabrication“, Appl. Phys. Lett. 9, 9 (2008)

[7] N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H.Yoshimura and K. Nagayama,“Mechanism of formation of two-dimensional crystals from latex particles on substrates”, Langmuir .8, 3183-3190 (1992)

[8] 溫熙森,“光子/聲子晶體理論與技術”北京:科學出版社(2006)

[9] R. Micheletto, H. Fukuda, and M. Ohtsu,“ A Simple Method for the Production of a Two-Dimensional, Ordered Array of Small Latex Particles”,Langmuir.8, 3333-3336 (1995)

[10] Takashi Yamasaki and Tetsuo Tsutsui, “Fabrication and Optical Properties of Two-Dimensional Ordered Arrays of Silica Microspheres”, Jpn. J. Appl. Phys. 38, 5916-5921(1999)

[11] Anjeanette D. Ormonde, Erin C. M. Hicks, Jimmy Castillo, and Richard P. Van Duyne,“Nanosphere Lithography, Fabrication of Large-Area Ag Nanoparticle Arrays by Convective Self-Assembly and Their Characterization by Scanning UV-Visible Extinction Spectroscopy”, Langmuir. 16, 6927-6931 (2004)

[12] Xiaoyu Zhang, Erin M. Hicks, Jing Zhao, George C. Schatz, and Richard P. Van Duyne,“ Electrochemical Tuning of Silver Nanoparticles Fabricated by Nanosphere Lithography”, Nano Lett. 7, 1503-1507(2005)


[13] Amanda J. Haes A Richard P. Van Duyne,“A unified view of propagating and localized surface plasmon resonance biosensors”, Anal Bioanal Chem. 378, 920-930(2004)

[14] Christy L. Haynes and Richard P. Van Duyne, Dichroic Optical Properties of Extended Nanostructures Fabricated Using Angle-Resolved Nanosphere Lithography, Nano Lett.7, 939-943(2005)

[15] R. Fenollosa and F. Meseguer,“Non-Close-Packed Artificial Opals,” Phys.Rev.
15, 1282-1285(2003)

[16] K.Busch ,S.John ,Phys.Rev. 58, 3896(1998)

[17] E.Yablonovutch,Nature (1999)

[18] C. Haginoya, M. Ishibashi, K. Koike,“Nanostructure array fabrication with a size-controllable natural lithography”,Applied Physics Letters. 20, 2934-2936(1997)

[19] K.Peng,M.Zhang,“Orderd silicon nanowire array via nanosphere lithography and metal-induced etching”, Appl. Phys. Lett. 16, 16(2007)

[20] Y.H.Kim ,J.Park ,“Selective Assembly of Colloidal Particles on a Nanostructured Template Coated with Polyelectrolyte Multilayers”,Advanced materials.19, 4426-4430(2007)

[21] E. Yablonovitch,“Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev Lett. 58, 2059(1987)

[22] S. John,“Stromg localization of photons in certain disordered dielectric superlattices,” Phys. Rev Lett. 58, 2486(1987)

[23] K.M.Ho,C.T.Chan, C.M.Soukoulis,“Existence of a photonic
gap in periodic dielectric structure,”Phy. Rev Lett. Volume: 65 Pages:3152 Published: 1990

[24] 欒丕綱,陳啟昌,“光子晶體---從蝴蝶翅膀到奈米光子學”五南圖書出版社

[25]J.Shakaya ,K. H. Kim, “Enhance light extraction in III-nitride ultraviolet photonic crystal light-emitting diodes,”Applied Physics Letters.85, 142-144(2004)

[26] R.W.Wood , Philos. Mag. 4, 396(1902)

[27]U.Fano,J.Opt,Soc.Am,Mag.31, 213(1941)

[28] A. Hessel and A. A. Oliner, Appl. Opt. 4, 1275(1965)

[29] 吳民耀、劉威志,“表面電漿子理論與模擬,”物理雙月刊,28,2,(2006)

[30] 邱國斌、蔡定平,“ 金屬表面電漿簡介,” 物理雙月刊,28,2,(2006)

[31] W.L.Barnes, A.Dereus, ans T.W.Ebbesen,“Surface Plasmon Subwavelength Optic” Nature.424, 824(2003)

[32] C. Bohren and D. Huffman, “Absorption and Scattering of Light by Small Particles” Nature. 306, 625(1983)

[33] Christy L. Haynes and Richard P. Van Duyne,“Nanosphere Lithography: A Versatile Nanofabrication Tool for Studies of Size-Dependent Nanoparticle Optics”, J. Phys. Chem. B. 105, 5599-5611(2001)

[34] J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz,“Shape effects in plasmon resonance of individual colloidal silver nanoparticles”, J. Chem. Phys. 116, 6755(2002)

[35] J. P. Wright, O. Worsfold,“Ultraflat Ternary Nanopatterns Fabrication Using Colloidal Lithography,”Advanced Materials.18, 421-426(2006)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top