[1]C. Park and T. S. Rappaport, “Short-range wireless communications for next-generation networks: UWB, 60 GHz millimeter-wave WPAN, and ZigBee,” IEEE Wireless Commun., vol. 14, pp. 70–78, Aug. 2007.
[2]R. fisher, “60 GHz WPAN standardization within IEEE 802.15.3c,” in Proc. Signals, Systems and Electronics (ISSSE), pp. 103–105, Jul. 2007.
[3]RF atmospheric absorption / ducting [Online]. Available : http://www.tscm.com/rf_absor.pdf
[4]J. A. Howarth, A. P. Lauterbach, M. L. J. Boers, L. M. Davis, A. Parker, J. Harrison, J. Rathmell, M. Batty, W. Cowley, C. Burnet, L. Hall, D. Abbott, and N. Weste, “60 GHz radios: enabling next-generation wireless applications,” in Proc. TENCON 2005 region 10, pp. 1–6, Nov. 2005.
[5]T. Tao, M. Gordon, K. Yau, M. T. Yang, and S. P. Voinigescu, “60-GHz PA and LNA in 90-nm RF-CMOS,” in IEEE RFIC Symp. Dig., pp. 91–94, Jun. 2006.
[6]G. Fettweis and R. Irmer, “WIGWAM:system concept development for 1 Gbit/s air interface,” Wireless World Research Forum, Jul. 2005.
[7]IBM’s 60-GHz Page [Online]. Available : http://domino.research.ibm.com/comm/research_projects.nsf/pages/mmwave.sixtygig.html
[8]H. Harada, I. Lakkis, and other contributors, “Merged proposal: new PHY layer and enhancement of MAC for mm-wave system proposal,” IEEE 802.15 Working Group for Personal Area Networks, doc.: IEEE 802.15-07-0943-01-003c, Nov. 2007.
[9]S. K. Reynolds, B. A. Floyd, U. R. Pfeiffer, T. Beukema, J. Grzyb, C. Haymes, B. Gaucher, and M. Soyuer, “A silicon 60-GHz receiver and transmitter chipset for broadband communications,” IEEE J. Solid-State Circuits, vol. 41, no. 12, pp. 2820–2831, Dec. 2006.
[10]U. R. Pfeiffer, J. Grzyb, D. Liu, B. Gaucher, T. Beukema, B. A. Floyd, and S. K. Reynolds, “A chip-scale packaging technology for 60-GHz wireless chipsets,” IEEE Trans. Microw. Theory and Tech., vol. 54, no. 8, pp. 3387–3397, Aug. 2006.
[11]A. Boudiaf, D. Bachelet, and C. Rumelhard, “A high-efficiency and low-phase-noise 38-GHz pHEMT MMIC tripler,” IEEE Trans. Microw. Theory and Tech., vol. 48, no. 12, pp. 2546–2553, Dec. 2000.
[12]E. Camargo, Design of FET Frequency Multipliers and Harmonic Oscillators. Reading, MA: Artech House, 1998.
[13]B. Razavi, “A mm-wave CMOS heterodyne receiver with on-chip LO and divider,” ISSCC Dig. Tech. Papers, pp. 188–189, Feb., 2007.
[14]B. Razavi, “A millimeter-wave CMOS heterodyne receiver with on-chip LO and divider,” IEEE J. Solid-State Circuits, vol. 43, no. 2, pp. 477–485, Feb. 2008.
[15]P. Smulders, “Exploiting the 60 GHz band for local wireless multimedia access:prospects and future directions,” IEEE Commun. Mag., vol. 40, pp. 140–147, Jan. 2002.
[16]P. Smulders, “60 GHz radio prospects and future directions,” Commun. and Veh. Tech. symp., pp. 1–8, Nov. 2003.
[17]E. Grass and F. Herzel, M. Piz, Y. Sun and R. Kraemer, “Implementation aspects of Gbit/s communication system for 60 GHz band,” in Proc. 14th Wireless World Research Forum (WWRF), Jul. 2005.
[18]P. Smulders, H. Yang, and I. Akkermans, “On the design of low-cost 60-GHz radios for multigigabit-per-second transmission over short distances,” IEEE Commun. Mag., vol. 45, pp. 44–51, Dec. 2007.
[19]A. Bourdoux, J. Nsenga, W. V. Thillo, F. Horlin, and L. V. Perre, “Air interface and physical layer techniques for 60 GHz WPANs,” Commun. and Veh. Tech. symp. pp. 1–6, Nov. 2006.
[20]劉佳協,60-GHz毫米波CMOS射頻前端RFICs及關鍵被動元件之研究設計,國立成功大學電腦與通訊工程研究所碩士論文,民國九十六年。[21]L. M. Correia and P. O. Françês, “A propagation model for the estimation of the average received power in an outdoor environment in the millimeter waveband,” in Proc. Veh. Tech. Conf., vol. 3, pp. 1785–1788, Jun. 1994.
[22]李亮輝,802.11a WLAN接收機射頻系統規劃與5 GHz CMOS差動LNA/Mixer之設計,國立成功大學電機工程學系碩士論文,民國九十一年。[23]C. H. Doan, S. Emami, A. M. Niknejad, and R. W. Brodersen, “Millimeter-wave CMOS design,” IEEE J. Solid-State Circuits, vol. 40, no. 1, pp. 144–155, Jan. 2005.
[24]C. M. Lo, C. S. Lin, and H. Wang, “A miniature V-band 3-stage cascode LNA in 0.13 μm CMOS,” ISSCC Dig. Tech. Papers, pp. 322–323, Feb. 2006.
[25]A. Bevilacqua, and A. M. Niknejad, “An ultrawideband CMOS low-noise amplifier for 3.1–10.6-GHz wireless receivers,” IEEE J. Solid-State Circuits, vol. 39, no. 12, pp. 2259–2268, Dec. 2004.
[26]D. J. Allstot, X. Li, and S. Shekhar, “Design considerations for CMOS low-noise amplifier,” in IEEE RFIC Symp. Dig., pp. 97–100, Jun. 2004.
[27]B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw Hill, 2001.
[28]B. Johnson, “Thermal agitation of electricity in conductors,” Phys. Rev., vol. 32, pp. 97–109, Jul. 1928.
[29]H. Nyquist, “Thermal agitation of electric charge in conductors,” Phys. Rev., vol. 32, pp. 110–113, Jul. 1928.
[30]T. H. Lee, The Design of CMOS Radio-frequency Integrated Circuits, Cambridge University Press, 2004.
[31]R. P. Jindal, “Compact noise models for MOSFETs,” IEEE Trans. Electron Devices, vol. 53, pp. 2051–2061, Sep. 2006.
[32]朱元凱,應用於802.11a WLAN之5 GHz U-NII頻帶降頻器CMOS RFIC,國立成功大學電機工程學系碩士論文,民國九十一年。[33]B. Razavi, “A 60-GHz CMOS receiver front-end,” IEEE J. Solid-State Circuits, vol. 41, no. 1, pp. 17–22, Jan. 2006.
[34]D. K. Shaeffer and T. H. Lee, “A 1.5-V, 1.5-GHz CMOS Low Noise Amplifier,” IEEE J. Solid-State Circuits, vol. 32, no. 5, pp. 745–759, May 1997.
[35]S. P. Voinigescu, T. O. Dickson, R. Beerkens, I. Khalid, and P. Westergaard, “A comparison of Si CMOS, SiGe BiCMOS, and InP HBT technologies for high-speed and millimeter-wave ICs,” in IEEE Silicon Monolithic Integrated Circuits in RF Systems (SiRF), pp. 111–114, Sep. 2004.
[36]T. Yao, M. Q. Gordon, K. K. W. Tang, K. H. K. Yau M. T. Yang, P. Schvan, and S. P. Voinigescu, “Algorithmic design CMOS and PAs for 60-GHz radio,” IEEE J. Solid-State Circuits, vol. 42, no. 5, pp. 1044–1057, May 2007.
[37]羅玠旻,毫米波CMOS電晶體測試元件,CIC測試元件報告T13-94B-05t,民國94年。
[38]A. M. Mangan, S. P. Voinigescu, M. T. Yang, and M. Tazlauanu, “De-embedding transmission line measurements for accurate modeling of IC designs,” IEEE Trans. Electron Dev., vol. 53, no. 2, pp. 235–241, Feb. 2006.
[39]蔡依修,利用襯墊與傳輸線遮蔽法萃取金氧半場效電晶體的本質雜訊與矽損耗基板模型的開發,CIC測試元件報告T13-96C-01t,民國96年。
[40]H. O. Vickes, M. Ferndahl, A. Masud and H. Zirath, “The influence of the gate leakage current and the gate resistance on the noise and gain performances of 90-nm CMOS for micro- and millimeter-wave frequencies,” IEEE MTT-S Int. Microw. Symp. Dig., vol. 2, pp. 971–974, Jun. 2004.
[41]J. A. Jr., K. T. Kornegay, D. Dawn, S. Pinel, J.Laskar, “60-GHz LNA using a hybrid transmission line and conductive path to ground technique insilicon,” in IEEE RFIC Symp. Dig., pp. 685–688, Jun. 2007.
[42]N. Weste and D. Harris, CMOS VLSI Design. Boston, Addison-Wesely, 2005.
[43]C. L. Ko, C. N. Kuo and Y. Z. Juang, “On-chip transmission line modeling and applications to millimeter-wave circuit design in 0.13 μm CMOS technology,” in IEEE Int. Symp. VLSI design Automation and test (VLSI-DAT), pp. 1–4, Apr. 2007.
[44]C. Inui, I. C. H. Lai, and M. Fujishima, “60 GHz CMOS current-reuse cascade amplifier,” in Proc. IEEE Asia Pacific Microw. Conf., pp. 793–796, Dec. 2007.
[45]S. A. Maas, Microwave Mixers, 2nd edition, Boston: Artech House, 1993.
[46]C. S. Lin, P. S. Wu, H. Y. Chang and H. Wang, “A 9–50-GHz Gilbert-cell down-conversion mixer in 0.13-μm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 5, pp. 293 – 295, May 2006.
[47]B. M. Motlagh, S. E. Gunnarsson, M. Ferndahl, and H. Zirath, “Fully integrated 60-GHz single-ended resistive mixer in 90-nm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 1, pp. 25–27, Jan. 2006.
[48]S. A. Maas, “A GaAs MESFET mixer with very low intermodulation,” IEEE Trans. Microw. Theory and Tech., vol. MTT-35, no. 4, pp. 425–429, Apr. 1987.
[49]S. Emami, C. H. Doan, A. M. Niknejad, and R. W. Brodersen, “A 60-GHz down-converting CMOS single-gate mixer,” in IEEE RFIC Symp. Dig., pp. 163–166, Jun. 2005.
[50]C. Tsironis, R. Meierer, and R. Stahlmann, “Dual-gate MESFET mixers,” IEEE Trans. Microw. Theory and Tech., vol. MTT-32, no. 3, pp. 248–255, Mar. 1984.
[51]R. A. Pucel, D. Masse, and R. Bera, “Performance of GaAs MESFET mixers at x-band,” IEEE Trans. Microw. Theory Tech., vol. MTT-24, pp. 351–360, June 1976.
[52]K. Kanazawa, M. Kazumura, S. Nambu, G. Kano, and I. Teramoto, “A GaAs double-balanced dual-gate FET mixer IC for UHF receiver front-end applications,” IEEE Trans. Microw. Theory Tech., vol. MTT-33, pp. 1548–1554, Dec. 1985.
[53]R. C. H. Li, Key Issues in RF/RFIC Circuit Design, 2005.
[54]鐘豪文,超寬頻UWB無線射頻收發機之寬頻CMOS RFICs的設計研究,國立成功大學電腦與通訊工程研究所碩士論文,民國九十五年。[55]B. Razavi, “Architectures and circuits for RF CMOS receivers,” in Proc. IEEE Custom Integr. Circuits Conf. (CICC), pp. 393–400, May. 1998.
[56]B. Razavi, “Design considerations for direct-conversion receivers,” IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process., vol. 44, pp. 428–435, Jun. 1997.
[57]B. Razavi, “RF IC design challenges,” in Proc. Design Automation Conf., pp. 408–413, Jun. 1998.
[58]A. A. Abidi, “Direct-conversion radio transceivers for digital communications”, IEEE J. Solid-State Circuits, vol. 30, no.12, Dec. 1995.
[59]許源佳、許孟列,5.2 GHz無線區域網路CMOS 低雜訊放大器之設計,國家晶片系統中心。
[60]黃秋皇,應用於IEEE 802.11b/g無線區域網路之2.4 GHz CMOS射頻接收機,國立成功大學電機工程學系碩士論文,民國九十二年。[61]A. Zolfaghari and B. Razavi, “A low-power 2.4-GHz transmitter/receiver CMOS IC,” IEEE J. Solid-State Circuits, vol.38, no. 2, pp. 176–183, Feb. 2003
[62]M. Zargari, D. K. Su, C. P. Yue, S. Rabii, D. Weber, B. J. Kaczynski, S. S. Mehta, K. Singh, S. Mendis, and B. A. Wooley, “A 5-GHz CMOS transceiver for IEEE 802.11a wireless LAN systems,” IEEE J. Solid-State Circuits, vol. 37, no. 12, pp. 1688–1694, Dec. 2002.
[63]C. Y. Hsu, C. Y. Chen, and H. R. Chuang, “A 60- GHz millimeter-wave bandpass filter using 0.18-μm CMOS technology,” IEEE Electron Device Lett., vol. 29, no. 3, pp. 246–248, Mar. 2008.
[64]Agilent Technologies / Taiwan Homepage [Online]. Available: http://www.home.agilent.com/agilent/home.jspx?cc=TW&lc=cht&NEWCCLC=TWcht&cmpid=4572
[65]S. Pellerano, Y. Palaskas, and K. Soumyanath, “A 64 GHz 6.5 dB NF 15.5 dB gain LNA in 90 nm CMOS,” in Proc. 33th Eur. Solid-State Circuits Conf. (ESSCIRC), pp. 352–355, Sep. 2007.