跳到主要內容

臺灣博碩士論文加值系統

(3.238.135.174) 您好!臺灣時間:2021/08/05 07:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:佟信輝
研究生(外文):Sin-Huei Tong
論文名稱:全光纖結構之偏振靈敏光學同調斷層攝影系統之研究
論文名稱(外文):The Study of Polarization-Sensitive Optical Coherence Tomography Using All Fiber-Optics Structure
指導教授:林鴻銘林鴻銘引用關係黃振發黃振發引用關係
指導教授(外文):Hermann LinJen-Fa Huang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電腦與通信工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:92
中文關鍵詞:低雙折射光纖光學同調斷層攝影系統保偏光纖
外文關鍵詞:Optical coherence tomographyLow-birefringence fiberPolarization-maintaining fiber
相關次數:
  • 被引用被引用:0
  • 點閱點閱:96
  • 評分評分:
  • 下載下載:26
  • 收藏至我的研究室書目清單書目收藏:0
光學同調斷層攝影系統是一種非侵入式的造影系統,而且已經被研發很多年了且也被使用在醫學應用上。偏振靈敏光學同調斷層攝影系統則又比一般的光學同調斷層攝影系統多一樣功能,它能夠量測待測樣品的雙折射資訊。因此偏振靈敏光學同調斷層攝影系統能夠使影像的對比度提高,進而增加待測樣品內部的影像分辨度。
然而建立一套光纖式的偏振靈敏光學同調斷層攝影系統比起一般以空氣為介質的架構還要困難。因為光纖內部的雙折射將會導致光的極化狀態改變。
我們提出一個以全光纖結構的偏振靈敏光學同調斷層攝影系統,但是我們採用的光纖主要是極化保偏光纖及低雙折射光纖(為一種特殊的單模光纖)。另外將我們製作的四分之一波板加入於我們的系統。我們將分別用沒有雙折射和有雙折射的待測樣品來驗証我們系統是否可以量測待測物的雙折射成分。
Optical coherence tomography (OCT) is a noninvasive imaging system, and it has been developed for many yeas, and applied in the medical application. Polarization-sensitive optical coherence tomography (PS-OCT) has one more function than conventional OCT, which is to acquire the information of birefringence in sample. Hence, it can improve the image contrast and has a better discrimination of image in sample.
However, the fiber based PS-OCT has more difficulty than free space type. Since the birefringence in fiber will cause the state of polarization changed.
We proposed an all fiber configuration of PS-OCT system; however, the fiber we adopt in the system are main PM (Polarization maintaining)-fiber and low birefringence fiber which is a special kind of single mode fiber. Moreover, the Quarter Wave Plate (QWP) applied in the system is manufactured by us. We demonstrate our system if it is available for measurement of birefringence in sample by using samples with no birefringence and birefringence, respectively.
Chapter 1. Introduction ...................................................................... 1
1.1 The History of OCT ................................................................................. 1
1.2 Motivation of the Research ...................................................................... 7
1.3 Structure of this thesis .............................................................................. 8
Chapter 2. Theorems .......................................................................... 9
2.1 The Principle of OCT ............................................................................... 9
2.2 Resolutions of OCT system ................................................................... 13
2.3 Dispersion .............................................................................................. 15
2.4 Retarders ................................................................................................ 17
2.5 Jones Vector of Typical Polarization States ........................................... 19
2.6 Jones Vector of Retarders ....................................................................... 20
2.7 The Principle of Polarization-Sensitive OCT (PS-OCT) ....................... 24
2.8 Polarization Maintaining Fiber (PM-Fiber) ........................................... 29
2.9 Signal Process ........................................................................................ 32
Chapter 3. Beforehand Preparation for Experiment ............................ 34
3.1 Lists of Equipments ............................................................................... 34
3.2 Specifications of Equipments ................................................................ 35
3.3 Establishment of a fiber-based OCT system .......................................... 39
Chapter 4. A Variety of Experiments ............................................... 45
4.1 Mismatch of Polarization between Two Arms ....................................... 45
4.2 Our Configuration of PS-OCT System .................................................. 48
4.3 The Procedure of Manufacture of Our QWP ......................................... 50
4.4 Comparative Analysis for the Cases of 22.5° and 23° ........................... 51
4.5 A Series of Experiments for our Configuration of PS-OCT .................. 54
Chapter 5. Conclusion and Future Work ......................................... 84
5.1 Conclusion ............................................................................................. 84
5.2 Future Work ........................................................................................... 85
References ........................................................................................ 86
[1] D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science, Vol. 254, pp. 1178–1181 (1991).
[2] R. C. Youngquist, S. Carr, and D. E. N. Davies, “Optical coherence domain reflectometry: A new optical evaluation technique,” Optics Letters, Vol. 12, pp. 158–160 (1987).
[3] K. Takada, I. Yokohama, K. Chida, and J. Noda, “New measurement system for fault location in optical waveguide devices based on an interferometric technique,” Applied Optics, Vol. 26, pp. 1603–1606 (1987).
[4] A.F. Fercher, K. Mengedoht, and W. Werner, “Eye-length measurement by interferometry with partially coherent light,” Optics Letters, Vol. 13, pp. 1867–1869 (1988).
[5] C. K. Hitzenberger, W. Drexler, and A. F. Fercher, “Measurement of corneal thickness by laser doppler interferometry,” Invest. Ophthalmol. Vis. Sci., Vol. 33, pp. 98–103 (1992).
[6] W. Clivaz, F. Marquis-Weible, R. P. Salathe, R. P. Novak, and H. H. Gilgen, “High-resolution reflectometry in biological tissue,” Optics Letters, Vol. 17, pp. 4–6 (1992).
[7] J. M. Schmitt, A. Kn¨uttel, and R. F. Bonner, “Measurement of optical properties of biological tissues by low-coherence reflectometry,” Applied Optics, Vol. 32, pp. 6032–6042 (1993).
[8] I. K. Jang, B. E. Bouma, D. H. Kang, S. J. Park, S. W. Park, K. B. Seung, K. B. Choi, M. Shishkov, K. Schlendorf, E. Pomerantsev, S. L. Houser, H. T. Aretz, and G. J. Tearney, “Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound,” J. The American College of Cardiology, Vol. 39, pp. 604-609 (2002).
[9] S. N. Roper, M. D. Moores, G. V. Gelikonov, F. I. Feldchtein, N. M. Beach, M. A. King, V. M. Gelikonov, A. M. Sergeev, and D. H. Reitze, “In vivo detection of experimentally induced cortical dysgenesis in the adult rat neocortex using optical coherence tomography,” J. Neuroscience Methods, Vol. 80, pp. 91–98 (1998).
[10] Julia Welzel, “Optical coherence tomography in dermatology: a review,” Skin Research and Technology, Vol. 7, pp. 1–9 (2001).
[11] S. J. Spechler, “Screening and surveillance for complications related to gastroesophageal reflux disease,” American J. of Medicine, Vol. 111, pp. 130-136 (2001).
[12] V. Guedes, J. Schuman, E. Hertzmark, G. Wollstein, A. Correnti, R. Mancini, D. Lederer, S. Voskanian, L. Velazquez, H. Pakter, T. Pedut-Kloizman, J. G. Fujimoto, and C. Mattox, “Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes,” OPHTHALMOLOGY, Vol. 110, pp. 177-189 (2003).
[13] Adrian Dobroiu, *Hiroshi Sakai, Hitoshi Ootaki, Manabu Sato, and Naohiro Tanno, “Coaxial Mirau interferometer,” Optics Letters, Vol. 27, pp. 1153-1155 (2002).
[14] Arnaud Dubois, Laurent Vabre, Albert-Claude Boccara, and Emmanuel Beaurepaire, “High-Resolution Full-Field Optical Coherence Tomography with a Linnik Microscope,” Applied Optics, Vol. 41, pp. 805-812 (2002).
[15] M. Sato, K. Seino, K. Onodera, N. Tanno, “Phase-drift suppression using harmonics in heterodyne detection and its application to optical coherence tomography,” Optics Communications, Vol. 184, pp. 95-104 (2000).
[16] Adrian Gh. Podoleanu, John A. Rogers, Radu C. Cucu, David A. Jackson, Bruno Wacogne, Henri Porte, Tijani Gharbi, “Simultaneous low coherence interferometry imaging at two depths using an integrated optic modulator,” Optics Communications, Vol. 191, pp. 21-30 (2001).
[17] Joseph M. Schmitt, ”Optical Coherence Tomography (OCT): A Review”, IEEE Journal of Selected Topics in Quantum Electronics, Vol. 5, pp. 1205-1215 (1999).
[18] G. J. Tearney, B. E. Bouma, and J. G. Fujimoto, “High-speed phase- and group-delay scanning with a grating-based phase control delay line,” Optics Letters, Vol. 22, pp. 1811-1813 (1997).
[19] Tuqiang Xie, Zhenguo Wang, and Yingtian Pan, “High-speed optical coherence tomography using fiberoptic acousto-optic phase modulation,” Optics Express, Vol. 11, pp. 3210-3219 (2003).
[20] M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, “Full range complex spectral optical coherence tomography technique in eye imaging,” Optics Letters, Vol. 27, pp. 1415-1417 (2002).
[21] Rainer A. Leitgeb, Christoph K. Hitzenberger, Adolf F. Fercher, and Tomasz Bajraszewski, “Phase-shifting algorithm to achieve high-speed long-depth-range probing by frequency-domain optical coherence tomography,” Optics Letters, Vol. 28, pp. 2201-2203 (2003).
[22] Yoshiaki Yasuno, Shuichi Makita, Takashi Endo, Gouki Aoki, Hiroshi Sumimura, Masahide Itoh and Toyohiko Yatagai, “One-shot-phase-shifting Fourier domain optical coherence tomography by reference wavefront tilting,” Optics Express, Vol. 12, pp. 6184-6191 (2004).
[23] R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Optics Express, Vol. 11, pp. 889-894 (2003).
[24] Thorlabs, http://www.thorlabs.com/OCT/index.cfm?pageref=30&page=OCT-Product.
[25] Zhongping Chen, Yonghua Zhao, Shyam M. Srinivas, J. Stuart Nelson, Neal Prakash, and Ron D. Frostig, “Optical Doppler Tomography,” IEEE Journal of Selected Topics in Quantum Electronics, Vol. 5, pp. 1134-1142 (1999).
[26] Yonghua Zhao, Zhongping Chen, Christopher Saxer, Qimin Shen, Shaohua Xiang, Johannes F. de Boer, and J. Stuart Nelson, “Doppler standard deviation imaging for clinical monitoring of in vivo human skin blood flow,” Optics Letters, Vol. 25, pp. 1358-1360 (2000).
[27] Johannes F. de Boer, Thomas E. Milner, Martin J. C. van Gemert, J. Stuart Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography,” Optics Letters, Vol. 22, pp. 934-936 (1997).
[28] Johannes F. de Boer, Shyam M. Srinivas, Arash Malekafzali, Zhongping Chen and J. Stuart Nelson, “Imaging thermally damaged tissue by polarization sensitive optical coherence tomography,” Optics Express, Vol. 3, pp. 212-218 (1998).
[29] Jeff Bush, Pepe Davis, Michael A. Marcus. “All-Fiber Optic Coherence Domain Interferometric Techniques,” in Proc. SPIE 4204A-08 (2000).
[30] Utkarsh Sharma, Student Member, IEEE, Nathaniel M. Fried, and Jin U. Kang, “All-Fiber Common-Path Optical Coherence Tomography: Sensitivity Optimization and System Analysis,” IEEE Journal of Selected Topics in Quantum Electronics, Vol. 11, pp. 799-805 (2005).
[31] Seon Young Ryu, Hae Young Choi, Jihoon Na, Eunseo Choi, Gil-ho Yang and Byeong ha lee, “Optical coherence tomography implemented by photonic crystal fiber,” Optical and Quantum Electronics, Vol. 37, pp. 1191-1198 (2005).
[32] Enock Jonathan, “Non-contact and non-destructive testing of silicon V-grooves: A non-medical application of optical coherence tomography (OCT),” Optics and Lasers in Engineering, Vol. 44, pp.1117–1131 (2006).
[33] Strakowski, M.R., Plucinski, J., Jedrzejewska-Szczerska, M., Hypszer, R., Maciejewski, M., Kosmowski, B.B., “Polarization sensitive optical coherence tomography for technical materials investigation,” Sensors & Actuators: A. Physical, Vol. 142, pp. 104-110 (2008).
[34] J. W. Goodman, Statistical Optics, New York, NY: John Wiley and Sons: 1985, pp.164–169.
[35] Ceyhun Akcay, Pascale Parrein, and Jannick P. Rolland, “Estimation of longitudinal resolution in optical coherence imaging,” Applied Optics, Vol. 41, No. 25, pp. 5256-5262 (2002).
[36] M. Born and E. Wolf, Principles of Optics, 6th ed., Pergamon, Oxford (1987).
[37] P. de Groot, “Chromatic dispersion effects in coherent absolute ranging,” Optics Letters, Vol. 17, pp. 898–900 (1992).
[38] E.-G. Neumann, “Single-Mode Fibers,” Chap. 11.5, Springer, Berlin (1988).
[39] Pavel Pavliček and Jan Soubusta, “Measurement of the influence of dispersion on white-light interferometry,” Applied Optics, Vol. 43, pp. 766-770 (2004).
[40] Eugene Hecht, OPTICS, Addison Wesley, Chapter 8.
[41] Yariv & Yeh, Optical Waves in Crystals, Wiley Classics Library, Chapter 3 & 5.
[42] Johannes F. de Boer, Thomas E. Milner, “Review of polarization sensitive optical coherence tomography and Stokes vector determination,” Journal of Biomedical Optics, Vol. 7, pp. 359-371 (2002).
[43] L. Mandel and E. Wolf, Optical Coherence and Quantum Optics, Cambridge U. Press, Cambridge (1995).
[44] Johannes F. de Boer, Thomas E. Milner, J. Stuart Nelson, “Determination of the depth-resolved Stokes parameters of light backscattered from turbid media by use of polarization-sensitive optical coherence tomography,” Optics Letters, Vol. 24, pp. 300-302 (1999).
[45] Shuliang Jiao, Gang Yao, and Lihong V. Wang, “Depth-resolved two-dimensional Stokes vectors of backscattered light and Mueller matrices of biological tissue measured with optical coherence tomography,” Applied Optics, Vol. 39, pp. 6318-6324 (2000).
[46] Jung-Taek Oh and Seung-Woo Kim, “Polarization-sensitive optical coherence tomography for photoelasticity testing of glass/epoxy composites,” Optics Express, Vol. 11, pp. 1669-1676 (2003).
[47] Brett E. Bouma, Guillermo J. Tearney, Handbook of Optical Coherence Tomography, Marcel Dekker, Inc. (2002).
[48] OZ Optics LTD., http://www.ozoptics.com/.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top