跳到主要內容

臺灣博碩士論文加值系統

(34.226.244.254) 您好!臺灣時間:2021/08/03 02:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張人杰
研究生(外文):Jen-Chieh Chang
論文名稱:長波長砷化鎵系列氧化侷限邊射型雷射之研製
論文名稱(外文):Investigation and Fabrication of Long Wavelength GaAs-based Oxide-Confined Edge-Emitting Lasers
指導教授:張為民張為民引用關係蘇炎坤蘇炎坤引用關係
指導教授(外文):Wei-Min ZhangYan-Kuin Su
學位類別:碩士
校院名稱:國立成功大學
系所名稱:奈米科技暨微系統工程研究所
論文種類:學術論文
畢業學年度:96
語文別:英文
論文頁數:97
中文關鍵詞:氧化侷限低起振電流量子井氧化
外文關鍵詞:Low threshold currentQWNative oxideOxide-confined
相關次數:
  • 被引用被引用:0
  • 點閱點閱:139
  • 評分評分:
  • 下載下載:40
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要的目的在於製作具低起振電流之長波長邊射型雷射。低起振電流雷射具有許多好處諸如:(1) 易於驅動 (2) 操作電流較小 (3) 低功率耗損 (4) 溫度特性較穩定。而低起振電流雷射在近紅外光波段,可應用於光纖通訊中,其節能概念與較優異的溫度特性能有效地降低系統成本。另一方面,易於驅動的特性,亦可與電子元件整合,應用在光電積體電路上。
  本論文著重於氧化侷限型雷射的製作,相較於其他低起振電流雷射,氧化侷限型雷射擁有相對簡易的製程並能提供良好的再現性。首先針對以InGaAs/GaAs量子井為主動層之雷射,我們製作了數個擁有不同量子井數目的寬面積雷射進行詳細的特性比較,之後選用較優異的單量子井結構作為氧化侷限型雷射的主動層。接著藉由適當地調整控制變因,對濕氧化製程進行參數最佳化的動作,並得到理想的氧化速率。最後,成功製作出氧化侷限型雷射,經由一連串不同線寬的氧化侷限型雷射與傳統寬面積雷射之比較後,證明了氧化侷限型雷射無論在起振電流、溫度特性或頻譜特性均擁有較良好的表現。它展示了最低15 mA的起振電流,降低幅度為寬面積雷射的75%。並且在如此的起振電流下,我們擁有非常低的起振電流密度190A/cm2,顯示出氧化侷限型雷射良好的電流侷限效果。
The main purpose of this dissertation is to develop the long-wavelength edge-emitting lasers with low threshold current (Ith). There are many advantages of low-threshold-curent lasers such as: (1) Easy to drive (2) Low operation current (3) Low power consumption (4) Better temperature stability. Semiconductor laser with low Ith emitted at near-infrared wave band could be used for transmitters of optical communication as the result of power saving and excellent temperature characteristic. On the other hand, the easy-driving property is needed for applications in optoelectric integrated circuits (OEIC’s).
This thesis focused on the oxide-confined (OC) laser structures. Compare with other low-threshold-current lasers, OC lasers are provided with predominance as simple process and excellent reproducibility. The InGaAs/GaAs QW lasers were studied at first. Several lasers with different number of QW were put into comparison. InGaAs/GaAs SQW structure was chosen as the active region material of OC lasers. After that, the wet oxidation process was optimized by precisely controlling the parameter. The OC lasers were successfully fabricated in last part. OC laser with different stripe widths had proofed the superior performance compare with conventional broad area (BA) lasers in many aspects such as low Ith, better temperature characteristic and better stability of lasing spectrum. The demonstrated lowest Ith is 15 mA, which decreased 75% Ith of BA lasers. The threshold current density (Jth) 190 A/cm2 is relative low compare with other papers, it indicated that the desirable current confinement effect of OC technique.
Abstract (in Chinese)  I
Abstract (in English)  II
Acknowledgement  IV
Contents  V
Table Captions  VII
Figure Captions  VIII
Chapter 1 Introduction  1
1.1 Motivation  1
1.2 Possible GaAs-based Material  2
1.3 Types of Edge-Emitting Lasers  3
1.4 Organization of This Thesis  4
Chapter 2 Theory of Lasers and Measurement Instruments  10
2.1 Theory of Lasers  10
2.2 HR-XRD Characterization  11
2.3 Photoluminescence Spectroscopy  13
2.4 Laser Measurement System  14
Chapter 3 Optimization of Highly Strained InGaAs/GaAs QW
Lasers  19
3.1 Introduction  19
3.2 Experiment Details  20
3.3 Fabrication Process of Broad Area Lasers  21
3.3.1 Laser Structures  21
3.3.2 Device Fabrication  21
3.4 Results and Discussions  22
3.4.1 L-I-V curves  22
3.4.2 Characteristics of Lasing Spectra  24
3.4.3 Laser Parameter Extraction  25
3.4.4 Material Characteristic Measurement  28
3.5 Summary  28
Chapter 4 Fabrication and Characterization of InGaAs/GaAs SQW Oxide-Confined Edge-Emitting Lasers  52
4.1Selective Wet Oxidation Process  52
4.1.1 Introduction   52
4.1.2 Experimental Results  53
4.2 Fabrication Process of Oxide-Confined Lasers  54
4.2.1 Laser Structures  54
4.2.2 Device Fabrication  55
4.3 Results and Discussions  55
4.3.1 Conventional Broad Area Laser  55
4.3.2 Narrow-Stripe Oxide-Confined Laser  56
4.3.3 Temperature Characteristics  57
4.3.4 Broad-Stripe Oxide-Confined Laser  58
4.4 Summary  59
Chapter 5 Conclusion and Future Prospects  92
5.1 Conclusion  92
5.2 Future Prospects  93
[1.1] J. S. Harris Jr., "GaInNAs long-wavelength lasers: progress and challenges," Semicond. Sci. Technol., Vol. 17, pp. 880-891, (2002)
[1.2] J. Hecht, Understanding Fiber Optics. Upper Saddle River, NJ: Prentice Hall, 2002.
[1.3] A. F. Phillips, S. J. Sweeney, A. R. Adams, and P. J. A. Thijs, "The temperature dependence of 1.3 and 1.55μm compressively strained InGaAs(P) MQW semiconductor lasers," IEEE J. Select. Topics Quantum Electron., vol. 5, pp. 301-352, 1999.
[1.4] D. L. Huffaker, G. Park, Z. Zou, O. B. Shchekin, and D. G. Deppe, “1.3 μm room-temperature GaAs-based quantum-dot laser.” Appl. Phys. Lett., vol. 73, pp. 2564-2566, 1998.
[1.5] S. R. Johnson, C. Z. Guo, S. Chaparro, Y. G. Sadofyev, J. Wamg, Y. Cao, N. Samal, J. Xu, S. Q. Yu, D. Ding, and Y. H. Zhang, “GaAsSb/GaAs band alignment evaluation for long-wave photonic applications,” J. Cryst. Growth, vol. 251, pp. 521-525, 2003.
[1.6] Jörg Heerlein, Stefan Gruber, Martin Grabherr, Roland Jäger, and Peter Unger, “Highly efficient laterally oxidized λ = 950 nm InGaAs-AlGaAs single-mode lasers,” IEEE J. Select. Topics Quantum Electron., vol. 5, no.3, 1999.
[1.7] M. Grabherr, R. Jäger, M. Miller, C. Thalmaier, J. Heerlein, R. Michalzik, and K. J. Ebeling, “Bottom-emitting VCSEL’s for high CW optical output power,” IEEE Photon. Technol., vol. 10, pp. 1061-1063, Aug. 1998.
[3.1] S. Mogg, N. Chitica, R. Schatz and M. Hammer,. “Properties of highly strained InGaAs/GaAs quantum wells for 1.2-µm laser diodes”, Appl. Phys. Lett., vol. 81, no. 13, 23 Sep. 2002.
[3.2] I. L. Chen, W. C. Hsu, H. C. Kuo, H. C. Yu, C. P. Sung, C.M. Lu, C.H. Chiou, J. M. Wang, Y. H. Chang, T. D. Lee, and J. S. Wang, “Low-Threshold-Current-Density, Long-Wavelength, Highly Strained InGaAs Laser Grown by Metalorganic Chemical Vapor Deposition,” Jpn. J. Appl. Phys., vol. 44, pp. 7485-7487, 2005.
[3.3] N. Tansu and L. J. Mawst, “Low-threshold strain-compensated InGaAs(N) ( λ = 1.19-1.31 μm) quantum-well lasers,” IEEE Photon. Technol. Lett., vol. 14, pp. 444-446, 2002.
[3.4] N. Tansu and L. J. Mawst, “High-performance strain-compensated InGaAs-GaAsP-GaAs ( λ = 1.17 μm) quantum-well diode lasers,” IEEE Photon. Technol. Lett., vol. 13, pp. 179-181, 2001.
[3.5] N. Tansu, J. Y. Yeh, and L. J. Mawst, “Extremely low threshod-current-density InGaAs quantum-well lasers with emission wavelength of 1215-1233 nm,” Appl. Phys. Lett., vol. 82, pp. 4038-4040, 2003.
[3.6] T. K. Shama, M. Zorn, F. Bugge, R. Hulsewede, G. Erbert, and M. Weyers, “High-power highly strained InGaAs quantum-well lasers operating at 1.2 μm,” IEEE Photon. Technol. Lett., vol. 14, no. 7, pp. 887-889, 2002.
[3.7] T. Kondo, D, Schlenker, T. Miyamoto, Z. Chen, M. Kawaguchi, E. Gouardes, F. Koyama and K. Iga, “Lasing Characteristics of 1.2 μm Highly Strained GaInAs/GaAs Quantum Well Lasers,” Jpn. J. Appl. Phys., vol. 40, pp. 467-471, 2001.
[3.8] F. Bugge, G. Erbert, J. Fricke, S. Gramlich, R. Staske, H. Wenzel, U. Zeimer, and M. Weyers, “12 W continuous-wave diode lasers at 1120 nm with InGaAs quantum wells,” Appl. Phys. Lett., vol. 79, pp. 1965-1967, 2001.
[3.9] D. Schlenker, T. Miyamoto, Z. Chen, F. Koyama, and K. Iga, “1.17-μm highly strained GaInAs-GaAs quantum-well laser,” IEEE Photon. Technol. Lett., vol. 11, pp. 946-948, 1999.
[3.10] M. Kondow, T. Kitatani, S. Nakatsuka, M. C. Larson, K. Nakahara,Y. Yazawa, M. Okai, and K. Uomi, “GaInNAs: A novel material for long-wavelength semiconductor lasers,” IEEE J. Sel. Topics Quantum Electron., vol. 3, no. 3, pp. 719–730, Jun. 1997.
[3.11] Söderberg, E., Modh, P., Gustacsson, J.S., Larsson, A., Zhang, Z.Z., Berggren, J., and Hammer, M.: “High speed, high temperature operation of 1.28 µm singlemode InGaAs VCSELs”, Electron. Lett., 2006, 42, pp. 978-979.
[3.12] G. P. Agrawal and N. K. Dutta, Long-wavelength semiconductor lasers. AT&T Bell Laboratories, Murray Hill, New Jersey., 1986, p.398-400.
[4.1] W. T. Tsang, “Self-terminating thermal oxidation of AlAs epilayers grown on GaAs by molecular beam epitaxy,” Appl. Phys. Lett., vol. 33, no. 5, pp. 426-429, 1978.
[4.2] J. M. Dallesasse and N. Holonyak, Jr., “Native-oxide stripe-geometry AlxGa1-xAs-GaAs quantum well heterostructure lasers,” Appl. Phys. Lett., vol.58, pp. 394–396, 1991.
[4.3] S. A. Maranowski, F. A. Kish, S. J. Caracci, N. Holonyak, Jr., J. M. Dallesasse, D. P. Bour, and D. W. Treat, “Native oxide defined In0.5(AlxGa1-xAs)0.5P quantum well heterostructure window lasers (660 nm),” Appl. Phys. Lett., vol. 61, pp. 1688–1690, 1992.
[4.4] D. L. Huffaker, D. G. Deppe, K. Kumar, and T. J. Rogers, “Native-oxide defined ring contact for low threshold vertical-cavity lasers,” Appl. Phys. Lett., vol. 65, pp. 97–99, 1994.
[4.5] M. J. Ries, E. I. Chen, and N. Holonyak, Jr., “Photopumped laser operation of a planar disorder and native oxide defined AlAs-GaAs photonic lattice,” Appl. Phys. Lett., vol. 68, pp. 2035–2037, 1996.
[4.6] O. Blum, K. L. Lear, H. Q. Hou, and M. E. Warren, “Buried refractive microlenses formed by selective oxidation of AlGaAs,” Electron. Lett., vol. 32, pp. 1406–1408, 1996.
[4.7] P. A. Grudowski, R. V. Chelakara, and R. D. Dupuis, “An InAlAs/InGaAs metal-oxide-semiconductor field effect transistor using the native oxide of InAlAs as the gate insulation layer,” Appl. Phys. Lett., vol. 69, pp. 388–390, 1996.
[4.8] C. I. H. Ashby, J. P. Sullivan, K. D. Choquette, K. M. Geib, and H. Q. Hou, “Wet oxidation of AlGaAs: The role of hydrogen,” J. Appl. Phys., 1997.
[4.9] K. D. Choquette, K. M. Geib, C. I. H. K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Topics Quantum Electron., vol. 3, no. 3, pp. 916-926, 1997.
[4.10] B. E. Deal and A. S. Grove, “General relationship for the thermal oxidation of silicon,” J. Appl. Phys., vol. 36, p. 3770, 1965.
[4.11] D. L. Huffaker, D. G. Deppe, C. Lei, and L. A. Hodge, “Sealing AlAs against oxidative decomposition and its use in device fabrication,” Appl. Phys. Lett., vol. 68, pp. 1948-1950, 1996.
[4.12] D. H. Lim, G. M. Yang, J. H. Kim, K. Y. Lim, and H. J. Lee, “Sealing of AlAs against wet oxidation and its use in the fabrication of vertical-cavity surface-emitting lasers,” Appl. Phys. Lett., vol. 71, pp. 1915-1917, 1997.
[4.13] C. Y. Liu, S. F. Yoon, W. J. Fan, A. Uddin, and S. Yuan, “Ridge-width dependence on high-temperature continuous-wave operation of native-oxide-confined InGaAsN triple-quantum-well lasers,” IEEE Photon. Technol., vol. 18, no. 6, March, 2006.
[4.14] G. J. Letal, J. G. Simons, J. D. Evans, and G. P. Li, “Determination of active-region leakage currents in ridge-waveguide strained-layer quantum-well lasers by varying the ridge width,” IEEE J. Quantum Electron., vol. 34, no. 3, pp. 512-518, Mar. 1998.
[4.15] L. A. Coldren, S. W. Corzine, Diode lasers and photonic integrated circuits. Wiley series in microwave & optical engineering, TA1700. C646, 1995, p. 327-334.
[4.16] K. Yang, C. P. Hains and Julian Cheng, “Efficient continuous-wave lasing operation of a narrow-stripe oxide-confined GaInNAs-GaAs multiquantum-well laser grown by MOCVD,” IEEE Photon. Technol., vol. 12, no. 1, Jan, 2000.
[4.17] C. S. Peng, N. Laine, J. Konttinen, T. Jouhti and M. Pessa, “Low threshold, high power and long lifetime InGaAsN/GaAs lasers,” IEE Proc. –Optoelectron., vol. 151, no. 5, Oct, 2005.
[4.18] Yongqiang Wei, Johan S. Gustavsson, Mahdad Sadeghi, Shumin Wang and Anders Larsson, “Dynamics and temperature-dependence of 1.3-μm GaInNAs double quantrm-well lasers,” IEEE J. Quantum Electron., vol.42, no. 12, Dec, 2006.
[4.19] B. Borchert, A. Y. Egorov, S. Illek and H. Riechert, “Static and dynamic characteristics of 1.29-μm GaInNAs ridge-waveguide laser diodes,” IEEE Photon. Technol., vol. 12, no. 6, Jun, 2000.
[4.20] Shunichi. Sato, “Low threshold and high characteristic temperature 1.3 µm range GaInNAs lasers grown by metalorganic chemical vapor deposition,” Jpn. J. Appl. Phys., vol. 39, pp. 3403-3405, 2000
[4.21] Takashi Kondo, Dietmr Schlenker, Tomoyuki Miyamoto, Zhibiao Chen, Masao Kawaguchi, Eric Gouardes, Fumio Koyama and Kenichi Iga, “Lasing characteristics of 1.2 µm highly strained GaInAs/GaAs quantum well lasers,” Jpn. J. Appl. Phys., vol. 40, pp. 467-471, 2001
[4.22] Yong Cheng, P. Daniel Dapkus, Michael H. MacDougal, Gye Mo Yang, “Lasing characteristics of high-performance narrow-stripe InGaAs-GaAs quantum-well lasers confined by AlAs native oxide,” IEEE Photon. Technol., vol. 8, no. 2, Feb, 1996
[4.23] Jörg Heerlein, Stefan Gruber, Martin Grabherr, Roland Jäger, and Peter Unger, “Highly efficient laterally oxidized λ = 950 nm InGaAs-AlGaAs single-mode lasers,” IEEE J. Select. Topics Quantum Electron., vol. 5, no.3, 1999.
[4.24] F. Bugge, U. Zeimer, S. Gramlich, I. Rechenberg, J. Sebastian, G. Erbert and M. Weyers, “Effect of growth conditions and strain compensation on indium incorporation for diode lasers emitting above 1050nm,” J. Crystal Growth.,221, 496-502, 2000
[4.25] Jörg Heerlein, Martin Grabherr, Roland Jäger, and Peter Unger, “Single-mode AlGaAs-GaAs lasers using lateral confinement by native-oxide layers,” IEEE Photon. Technol., vol. 10, no. 4, Apr, 1998
[4.26] Jörg Heerlein, Stefan Gruber, and Peter Unger, “Mode Analysis of semiconductor lasers using lateral confinement by native-oxide layers,” IEEE J. Quantum Electron., vol. 34, no. 10, Oct, 1998
[5.1] Yong Luo and Douglas C. Hall, “Nonselective wet oxidation of AlGaAs heterostructure waveguides through controlled adding of oxygen,” IEEE J. Select. Topics Quantum Electron., vol. 11, no. 6, Nov, 2005
[5.2] D.Liang, Jusong Wang, Juno Yu-Ting Huang, Jeng-Ya Yeh, Luke J. Mawst and Douglas C. Hall, ”Deep-Etched Native-Oxide-Confined High-Index-Contrast AlGaAs Heterostructure Lasers With 1.3 μm Dilute-Nitride Quantum Wells”, IEEE J. Select. Topics Quantum Electron., vol. 13, no. 5, Sep./Oct. 2007
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top