跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/03 17:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳佑誠
研究生(外文):Yu-Cheng Chen
論文名稱:使用金屬氟化物緩衝層改善有機發光二極體光電特性之研究
論文名稱(外文):The investigation on the optical and electrical characteristics of OLEDS using metal fluoride buffer layer
指導教授:朱聖緣朱聖緣引用關係
指導教授(外文):Sheng-Yuan Chu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:奈米科技暨微系統工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:94
中文關鍵詞:緩衝層有機發光二極體
外文關鍵詞:buffer layerOLED
相關次數:
  • 被引用被引用:0
  • 點閱點閱:116
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要為製作高效率機發光二極體元件。由於緩衝層可以藉由如界面偶極的效應,降低ITO 與有機材料之間的能障,並且可改善表面附著不平整的問題,使得電洞注入效能提升;藉此讓更多的電洞、電子在有機發光層能產生再結合放光的現象,進而達到降低元件的驅動電壓、提升元件效率和發光強度等優點。在此研究我們採用NaF、AgF、CuF2 薄膜當作緩衝層製作高效率元件。
論文主要分為兩大部分,第一部份為研究各類金屬氟化物(NaF、AgF、CuF2)不同厚度以及不同表面處理對元件特性的影響。第二部份為探討單層薄膜的各種特性:穿透度以及吸收率、單電洞元件的電特性、功函數之量測、薄膜表面特性之量測等用以研究探討其電荷注入和傳輸機制以及對元件特性影響之原因。
由實驗結果發現:HOMO 值位於ITO 電極費米能階和NPB的HOMO值的NaF 可以改善電洞注入效率;AgF 與CuF2則因為可於表面形成一層極薄的金屬氧化物,其功函數高於NPB 的HOMO 值,亦可有效降低元件的驅動電壓以及增進其效率。
In this thesis, we focused on how to fabricate high efficiency organic light emitting diodes with high efficiency by inserting the buffer layer. It can make use of the effect like interfacial dipole to lower the energy barrier between the ITO electrode and the organic material and also improve the interface roughness between them. Thus it helps to increase the hole-injection efficiency. With it, more holes and electrons recombine and emit photons in the organic emission layer and achieve the goals of lowering driving voltage、increasing efficiency and emission intensity of devices. In this study, we use NaF, AgF and CuF2 thin film as buffer layer to fabricate high efficiency organic light emitting diodes.

In the first part of this search, we deposited NaF,AgF and CuF2 thin film with different thickness and surface treatment as buffer layer to investigate the characteristics of the OLEDS. At the second part, We also analyzed the various properties of the single layer thin film such as transmittance, absorption, hole only device, work function and surface structure etc to studied the hole injection、transport mechanism and the effects on the characteristics of the devices.

In this study, we found that NaF’s HOMO between ITO’s EF and NPB’s HOMO, hole-injecting efficiency can be improved. Because of generating the ultra-thin metal oxide film above AgF and CuF2 film and their work function was higher than HOMO of NPB, undoubtedly they could lower the driving voltage and improved the efficiency of the devices.
摘要......................................................1
Abstract..................................................2
目錄......................................................3
圖目錄....................................................5
第一章 緒論...............................................7
1-1 前言................................................7
1-2 電洞注入緩衝層之文獻回顧............................9
1-3 實驗動機...........................................11
第二章 理論基礎..........................................13
2-1 螢光理論...........................................13
2-2 有機發光二極體之發光原理...........................16
2-3 元件電流限制.......................................17
2-3-1 電荷注入.......................................18
2-3-2 電荷傳播.......................................19
2-4 有機發光二極體的結構...............................26
2-5 有機發光二極體材料.................................27
2-5-1 電洞注入與緩衝層材料...........................27
2-5-2 電洞傳輸材料...................................29
2-5-3 電子輸材料及發光層主體材料.....................30
2-5-4 發光層客體材料.................................30
2-5-5 電極...........................................31
第三章 實驗步驟與方法....................................33
3-1 有機電激發光元件製程分類...........................33
3-2 真空熱蒸鍍系統設備(Thermal Evaporation System).....34
3-3 實驗材料...........................................35
3-4 ITO基板前置處理之實驗步驟..........................36
3-5 真空蒸鍍之實驗步驟.................................38
3-6 單體沉積速率之測定.................................39
3-7 薄膜穿透率和吸收率之分析...........................39
3-8 氟化物(NaF AgF CuF2)之SEM和AFM分析.................39
3-9 OLED單層、多層元件之電流、電壓與亮度關係曲線圖量測.40
3-10 薄膜表面化學分析..................................40
3-11 四點探針量測......................................41
第四章 結果與討論........................................42
4-1 金屬氟化物(NaF AgF CuF2)對元件影響之分析...........42
4-1-1 作為陽極緩衝層厚度對元件特性的影響.............42
4-1-1-1 ITO/NaF/NPB/Alq3/LiF/Al....................42
4-1-1-2 ITO/AgF/NPB/Alq3/LiF/Al....................46
4-1-1-3 ITO/CuF2/NPB/Alq3/LiF/Al...................54
4-1-1-4 綜合比較...................................59
4-1-2 作為陰極緩衝層厚度對元件特性的影響.............59
4-1-2-1 ITO/NPB/Alq3/NaF/Al........................59
4-1-2-2 ITO/NPB/Alq3/AgF/Al........................63
4-1-2-3 ITO/NPB/Alq3/CuF2/Al.......................66
4-1-2-4 綜合比較...................................70
4-2 金屬氟化物(NaF AgF CuF2)薄膜之分析.................70
4-2-1 AC2功函數之量測................................70
4-2-2 穿透率之分析...................................72
4-2-3 XPS組成成份分析................................73
4-2-4 AFM以及SEM表面結構分析.........................76
4-2-5 接觸角量測.....................................82
4-2-6 四點探針量測片電阻之分析.......................85
4-3金屬氟化物(NaF AgF CuF2)單電洞元件特性探討..........85
第五章 結論與未來展望....................................89
5-1 結論...............................................89
5-2 未來展望...........................................90
參考文獻.................................................91
[1] M. Pope, H. Kallmann, P. Magnante, J. Chem. Phys. 38 , p.2024(1963).
[2] C. W. Tang, Appl. Phys. Lett. 48,183(1986).
[3] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks,K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes,Nature,347 ,p.539 (1990).
[4] Y. Ohmore, and K. YoShino, Jap. J. Appl. Phys. 30, p.L938(1991).
[5] Y. Ohmore, and K. YoShino, Jap. J. Appl. Phys. 30, p.L941(1991).
[6] C. Adachi, T. Tsutsui, and S. Saito, Appl. Phys. Lett. 57, p.531 (1990).
[7] S. A. Van Slyke, C. H. Chen, and C. W. Tang, Appl. Phys. Lett.69,p.2160 (1996).
[8] H. You, Y. Dai, Z. Z. Zhang, and D. Ma, J. Appl. Phys.101, p.026105 (2007).
[9] J. Moon, J. Bae, J. Jeong, S Jeong, N. Park, H. Kim, J. Appl. Phys.90, p.163516 (2007).
[10] S. Sohn, K. Park, D. Jung, H. Kim, H. Chae, Jap. J. Appl. Phys. 46, p.L461 (2007).
[11] D. A. Neamen, Semiconductor Physics & Devices, 2nd Ed., p. 319.
[12] S. M. Sze, Physics of Semiconductor Devices (Wiley, New York,1981).
[13] E. H. Rhoderick and R. H. Williams, Metal Semiconductor-Contacts (Clarendon, Oxford, 1988).
[14] A. J. Champbell and D. D. C. Bradley, J. Appl. Phys. 86, p.5004(1999).
[15] I. H. Campbell, P. S. Davids, D. L. Smith, N. N. Barashkov,and J. P. Ferraris, Appl. Phys. Lett. 72, p.1863 (1998).
[16] P. S. Davids, I. H. Campell, and D. L. Smith, J. Appl. Phys.82, p.6319 (1997).
[17] R. H. Fowler and L. Nordheim, Proc. R. Soc. London Ser. A 119, p.173 (1928).
[18] Y. Yang and A. J. Heeger, Appl. Phys. Lett. 64, p.1245 (1994).
[19] Y. Yang, E. Westerweele, C. Zhang, P. Smith, and A. J. Heeger, J. Appl. Phys. 77, p.694 (1995).
[20] H. Vestweber, J. Pommerehne, R. Sander, R. F. Mahrt, A. Greiner, W. Heitz, and H. Bässler, Synth. Met. 68, p.263 (1995).
[21] P. S. Davids, S. M. Kogan, I. D. Parker, and D. L. Smith, Appl. Phys. Lett. 69, p.2270 (1996).
[22] D. V. Khramtchenkov, H. Bässler, and V. I. Arkhipov, J. Appl. Phys. 79, p.9283 (1996).
[23] D. J. Pinner, R. H. Friend, and N. Tessler, J. Appl. Phys. 86, p.5116 (1999).
[24] P. E. Burrows, Z. Shen, V. Bulovic, D. M. McCarty, S. R. Forrest, J. A. Cronin, and M. E. Thompson, J. Appl. Phys. 79, p.7991 (1996).
[25] S. Karg, M. Meier, and W. Riess, J. Appl. Phys. 82, p.1951 (1997).
[26] A. J. Champbell, D. D. C. Bradley, and D. G. Lidzey, J. Appl. Phys. 82, p.6326 (1997).
[27] M. Dongge, I. A. Hümmelgen, B. Hu, and F. E. Karasz, J. Appl. Phys. 86, p.3181 (1999).
[28] Y. He and J. Kanicki, Appl. Phys. Lett. 76, p.661 (2000).
[29] D. Ma, I. A. Hümmelgen, X. Jing, Z. Hong, L. Wang, X. Zhao, F. Wang, and F. E. Karasz, J. Appl. Phys. 87, 312 (2000).
[30] K. C. Kao, W. Hwang, Electrical Transport in Solids (Pergamon, Oxford, 1981).
[31] N. F. Mott and R. W. Gurney, Electronic Process in Ionic Crystals (Dover Publication, New York, 1940).
[32] W. Helfrich, Physics and Chemistry of the Organic Solid State 3, p.1 (1967).
[33] M. A. Lambert and P. Marks, Current Injection in Solids (Academic, New York, 1970).
[34] H. C. F. Martens, J. N. Huiberts, and P.W. M. Blom, Appl. Phys. Lett. 77, p.1852 (2000).
[35] P. W. M. Blom and M. C. J. M. Vissenberg, Mat. Sci. & Eng. 27, p.53 (2000).
[36] P. W. M. Blom, H. C. F. Martens, and J. N. Huiberts, Synth. Met. 121, p.1621 (2001).
[37] I. H. Campbell, D. L. Smith, C. J. Neef, and J. P. Ferraris, Appl. Phys. Lett. 74, p.2809 (1999).
[38] J. C. Scott, P. J. Brock, J. R. Salem, S. Ramos, G. G. Mallianras, S. A. Carter, and L. Bozano, Synth. Met. 111-112, P.289 (2000).
[39] K. Unger, Phys. Stat, Sol. 2, p.1279 (1962).
[40] J. G. Simmons and M. C. Tam, Phys. Rev. B 7, p.3706 (1973).
[41] G. P. Owen, J. Sworakowski, J. M. Thomas, D. F. Williams, and J. O. Williams, J. Chem. Soc. Faraday II 70, p.853 (1974).
[42] A. J. Campbell, M. S. Weaver, D. G. Lidzey, and D. D. C. Bradley, J. Appl. Phys. 84, p.6737 (1998).
[43] M. Koehler, and I. A. Hümmelgen, J. Appl. Phys. 87, p.3074(2000).
[44] S. B. Lee, K. Yoshino, J. Y. Park, and Y. W. Park, Phys. Rev.B 61, p.2151 (2000).
[45] C. C. Wu, J. K. M. Chun, P. E. Burrows, J. C. Sturm, M. E.Thompson, S. R. Forrest, and R. A. Register, Appl. Phys. Lett.66, p.653 (1995).
[46] G. Y. Jung, C. Pearson, L. E. Horsburgh, I. D. Samuel, A. P.Monkman, and M. C. Petty, J. Phys. D: Appl. Phys. 33, p.1029 (2000).
[47]L.S. Hung, L.R. Zheng, Appl. Phys. Lett.78, p.679 (2001).
[48]Y.Qiu, Y. Gao, L. Wang, Synth Met., 130, p.235 (2002).
[49]Z. B. Deng, X. M. Ding, S.T. Lee, Appl. Phys. Lett.74, p.2222(1999).
[50]C. H. Chen, C. W. Tang, J. Shi, Thin Solid Films, 363, p.327 (2000).
[51] Xiao Buwen, Shang Yafeng, Meng Meng, Li Chuannan, Microelectronics Journal, 36, p.105(2005)
[52] Wenping Hu, Kaoru Manabe, Takumi Furukawa, and Michio Matsumura, Appl. Phys. Lett. 80P15(2002)
[53] Shuai WANG, Takahiro OSASA,Michio MATSUMURA, Japanese Journal of Applied Physics, Vol. 45, No. 11, pp. 8894–8896(2006)
[54] Joo Hyon Noh, Byoung Har Hwang, Chang Su Kim, Sung Jin Jo, Jong Tae Kim,Hyeon Seok Hwang, and Hong Koo Baik , Appl. Phys. Lett. 92P023306(2008)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊