跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/05 01:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳澤漳
研究生(外文):Tse-Chang Chen
論文名稱:微流體感測器的設計與製作
論文名稱(外文):The Design and Fabrication of Micro Flow Sensor
指導教授:鍾震桂
指導教授(外文):Chen-Kuei Chung
學位類別:碩士
校院名稱:國立成功大學
系所名稱:奈米科技暨微系統工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:129
中文關鍵詞:微流體感測器
外文關鍵詞:sensormicrofluid
相關次數:
  • 被引用被引用:0
  • 點閱點閱:114
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本論文研究目的乃在於設計一低流速時的微流體流量感測器,並利用數值模擬軟體(CFDRC)模擬低流速時的熱場分布,以供預測微流體流量感測器設計之參考。元件主要設計理念,在於一微流道內置放微小加熱及感測單元。由微加熱器產生熱量,流體流過加熱單元帶走熱量產生溫度場變化,再藉由量測加熱器上下游不同感測單元其電阻或電壓輸出變化與流速間的關係,作為流速量測的依據。並改變感測單元的置放位置,來探討感測器於不同置放位置的靈敏度。
製程中,採用AZ4620正光阻作為lift-off過程中的阻擋犧牲層,並採用載玻片及氮化鉭(TaN)以取代昂貴的矽晶圓及白金(Pt)。微流道製作方面則採用SU-8厚膜光阻以黃光微影製程在矽晶圓上製作母模;再以聚二甲基矽氧皖(polydimethysiloxane, PDMS) 為材料翻模製作微流道,並處以微波氧電漿進行PDMS與載玻片之間的接合。最後再以高精密電壓電流表並接合濾波電路來量測不同位置,不同流速間感測單元的訊號值。
對於本研究所設計的微流體感測器其主要參數為:TaN材料的氮氣含量與其溫度電阻係數(TCR)、感測單元與加熱單元間距離、加熱單元所輸入的功率,然後在固定功率,固定流速下紀錄不同感測單元位置所測量到的訊號變化及靈敏度。根據本論文的模擬和實驗結果,可發現感測元件之置放位置與輸入之功率及流速大小是影響感測器靈敏度最大的因素。且由實驗的數據可得知本感測器在極低流速(Re=1~10)內有最高靈敏度及最精確訊號量測值。
This thesis investigates a micro flow volume sensor to measure a few amount of liquid, and tested to quantify the flow measuring characteristics over the variation of flow rate. A TaN heater and sensor unit were formed on a glass(SiO2) subtrate to replace Pt, and using PDMS as the microchannel material. Furthermore, in order to understand the situation of flow heat, we use the software “Computational Fluid Dynamics Research Corporation (CFDRC)” to simulate the heat fiux distribution.
During fabrication, SU-8 thick film photoresist is used to fabricate the mold of the micromixers on the silicon wafer by photolithography. Then, we transferred the mold structure of the micromixer to polydimethysiloxane (PDMS), and bond it with a cover layer of PDMS. The output signal was then demonstrated by a high precise current and voltage meter with filter.
The aomainant parameters for the micro flow sensor are TCR of changing N2 component percentage in TaN、the distance between heater and sensor unit and input power. And then , we measured the signal and sensitivity in fixed power and flow rate condition. According to the numerical simulation and the experimental results,it shows that the main factor of the sensor sensitivity is distance between heater and sensor and flow rate. It also shows the best sensitivity in ultra low flow rate situation(Re=1~10).
目錄

中文摘要 I
英文摘要 II
致謝 III
目錄 IV
表目錄 VI
圖目錄 VII

第一章 緒論 1
1-1 前言 1
1-2 文獻回顧 3
1-3研究目的 7
第二章 微流體感測器設計原理、實驗方法與量測 8
2-1 微流體感測器及流速感測原理 8
2-1-1流速感測原理 8
2-2 材料 30
2-2-1白金 30
2-2-2 TaN 31
2-3 CFD模擬軟體理論基礎 34
2-3-1統御方程式 34
2-3-2數值方法 37
2-3-3 邊界條件(Boundary condition) 43
2-3-4 經驗關係式 45
2-3-5 數值模擬求解軟體 46
2-4實驗儀器介紹 57
2-4-1 旋轉塗佈機(Spin-Coater) 57
2-4-2 光罩對準機(Mask Aligner) 59
2-4-3電子束蒸鍍機(Electron Beam Evaporation) 60
2-4-4 磁控濺鍍機(Sputter) 62
2-4-5 四點探針、電阻溫度係數量測系統 64
2-4-6 微量式注射幫浦(syringe pump) 67
2-4-7 超微細表面測定儀(Microfigure Measuring Instrument,α-step) 67
第三章 製作方法與實驗量測系統 69
3-1 微流體流速感測元件尺寸設計 69
3-2 微流體流速感測元件製作方式 70
3-2-1 感測電路部分 70
3-2-2 微流道製作部分 84
3-2-3 成品 101
第四章 結果與討論 102
4-1 CFD模擬的結果 102
4-2 量測結果探討 108
第五章 未來展望 119
5-1 改善空間 119
5-2 未來展望 120
參考文獻 121
1、 R. Kersjes, W. Mokwa, A fast liquis flow sensor with thermal isolation by oxide-filled trenches, Sensors and Actuators A46-47(1995) 373-379.
2、 Huibert-Jan Verhoeven, Johan H. Huijsing, Design of integrated thermal flow sensors using thermal sigma-delta Modulation, Sensors and Actuators A 52 (1996) 198-202.
3、 N.T. Nguyen, Micromachine flow sensor-a review, Flow Meas. Instrum. Vol. 8. NO. 1. pp-7-16. 1997.
4、 U. Dillner, E. Kessler, S. Poser, V. Baier, J. Mtiller, Low power consumption thermal gas-flow sensor based on thermopiles of highly effective thermoelectric materials, Sensors and Actuators A 60 (1997) 1 –4.
5、 H. Stachowiak, S. Lassue, A. Dubernard, E. Gaviot, A thermoelectric sensor for fluid flow measurement. principles, calibration and solution for self temperature compensation, Flow Measurement and Instrumentation 9 (1998) 135–141.
6、 J. Steurer, F. Kohl, Adaptive controlled thermal sensor for measuring gas flow, Sensors and Actuators A 65 (1998) 116-122.
7、 Kei Toda , Yasuko Maeda , Isao Sanemasa , Koichi Ishikawa , Noriyuki Kimura, Characteristics of a thermal mass-flow sensor in vacuum systems, Sensors and Actuators A 69 (1998) 62-67.
8、 U. Diillner, E. Kessler, S. Poser, V. Baier and ,J. Moiler, Thermal simulation of a micromachined thermopile-based thin-film gas flow sensor,Microelectronics Journal 29 (1998) 291-297.
9、 G. Kaltsas, A.G. Nassiopoulou, Novel C-MOS compatible monolithic silicon gas flow sensor with porous silicon thermal isolation, Sensors and Actuators 76(1999).133–138.
10、M. Ashauer , H. Glosch, F. Hedrich, N. Hey, H. Sandmaier, W. Lang, Thermal flow sensor for liquids and gases based on combinations of two Principles, Sensors and Actuators 73(1999)7–13.
11、Gerlinde Bedo¨, Heike Fannasch, Rudolf Mu¨ller, A silicon flow sensor for gases and liquids using AC measurements, Sensors and Actuators A 85(2000)124–132.
12、Shih-Ta Hung, Shwin-Chung Wong, Weileun Fang, The development and application of microthermal sensors with a mesh-membrane supporting structure, Sensors and Actuators 84(2000) 70–75.
13、A. Rasmussen, C. Mavripli, M.E. Zaghloul, O. Mikulchenk, K. Mayaram, Simulation and optimization of a microfuidic fow sensor, Sensors and Actuators A 88 (2001) 121-132.
14、K.A.A Makinwa , J.H. Huijsing, A wind-sensor interface thermal sigma delta modulation techniques, Sensors and Actuators A 92 (2001) 280-285.
15、Shuyun Wu, Qiao Lin, Yin Yuen, Yu-Chong Tai, MEMS flow sensors for nano-fuidic applications, Sensors and Actuators A 89 (2001) 152-158.
16、Gwo-Bin Lee, Tzu-Ying Kuo, Wan-Yu Wu, A novel micromachined flow sensor using periodic flapping motion of a planar jet impinging on a V-shaped plate, Experimental Thermal and Fluid Science 26 (2002) 435–444.
17、R.J. Rodrigues, R. Furlan, Design of microsensor for gases and liquids flow measurement, Microelectronics Journal 34 (2003) 709–711.
18、Seok Pil Jang, Sung Jin Kim, Kyung Wook Paik, Experimental investigation of thermal characteristics for a microchannel heat sink subject to an impinging jet, using a micro-thermal sensor array, Sensors and Actuators A 105 (2003) 211–224.
19、Seunghyun Kim, Sunghyun Kim, Yongduk Kim, Sekwang Park, ’’A circular-type thermal flow direction sensor free from temperature compensation’’, Sensors and Actuators A 108 (2003) 64–68.
20、Seunghyun Kim, Sunghyun Kim, Yongduk Kim, Sekwang Park, A circular-type thermal flow direction sensor free from temperature compensation, Sensors and Actuators A 108 (2003) 64–68.
21、Sekwang Park, Seunghyun Kim, Sunghyun Kim, Yongduk Kim, A flow direction sensor fabricated using MEMS technology and its simple interface circuit, Sensors and Actuators B 91 (2003) 347–352.
22、A. Al-Salaymeh, J. Jovanovic, F. Durst, Bi-directional flow sensor with a wide dynamic range for medical applications, Medical Engineering & Physics 26 (2004) 623–637.
23、N. Sabaté, J. Santander, L. Fonseca, I. Gràcia, C. Cané, Multi-range silicon micromachined flow sensor, Sensors and Actuators A 110 (2004) 282–288.
24、P. Bruschi, D. Navarrini, M. Piotto, A flow sensor for liquids based on a single temperature sensor operated in pulsed mode, Sensors and Actuators A 110 (2004) 269–275.
25、J.W. van Honschoten , V.B. Svetovoy , T.S.J. Lammerink, G.J.M. Krijnen , M.C. Elwenspoek, Determination of the sensitivity behavior of an acoustic, thermal flow sensor by electronic characterization, Sensors and Actuators A 112 (2004) 1–9.
26、I. Le_on, R. Amador, K. Kohlhof, Evaluation of MUMPS polysilicon structures for thermal flow sensors, Microelectronics Reliability 44 (2004) 651–655.
27、Shramik Sengupta, Babak Ziaie, Victor H. Barocas, Lag-after-pulsed-separation microfluidic flowmeter for biomacromolecular solutions, Sensors and Actuators B 99 (2004) 25–29.
28、P. Fürjes, G. Légrádi , Cs. Dücso, A. Aszódi, I. Bársony, Thermal characterisation of a direction dependent flow sensor, Sensors and Actuators A 115 (2004) 417–423.
29、Teckjin Nam, Seunghyun Kim, Sekwang Park, The temperature compensation of a thermal flow sensor by changing the slope and the ratio of resistances, Sensors and Actuators A 114 (2004) 212–218.
30、Chien-Wei Liu, Chie Gau, Chin-Gi Liu, Chin-Sheng Yang, Design consideration and fabrication of a microchannel system containing a set of heaters and an array of temperature sensors, Sensors and Actuators A 122 (2005) 177–183.
31、Joost Lo¨tters, ’’Liquid flow sensor for nano- and micro-flow ranges’’, Sensor Review, Volume 25, Number 1, 2005 • 20–23.
32、L. Scholer, B. Lange, K. Seibel, H. Schafe, M. Walder, N. Friedrich, D. Ehrhardt, F.Schonfeld, G. Zech, M. Bohm, ‘’Monolithically integrated micro flow sensor for lab-on-chip applications’’, Microelectronic Engineering 78–79 (2005) 164–170.
33、Pulak Nath, Shuvo Roy, Terrence Conlisk and Aaron J. Fleischman, A System for Micro/Nano Fluidic Flow Diagnostics, Biomedical Microdevices 7:3, 169–177, 2005.
34、Yan Weiping, Liu Chong, Li Jianhua, Ma Lingzhi, Niu Defang, Thermal distribution microfluidic sensor based on silicon, Sensors and Actuators B 108 (2005) 943–946.
35、Hongjian Zhang, Yongmei Huang, Zhiqiang Sun, A study of mass flow rate measurement based on the vortex shedding principle, Flow Measurement and Instrumentation 17 (2006) 29–38.
36、J. Lerchner, A. Wolf, G. Wolf, V. Baier, E. Kessler, M. Nietzsch, M. Kr¨ugel, A new micro-fluid chip calorimeter for biochemical applications, Thermochimica Acta 445 (2006) 144–150.
37、Ahmed Al-Salaymeh, Moh’d Sami Ashhab, Modelling of a novel hot-wire thermal flow sensor with neural nets under different operating conditions, Sensors and Actuators A 126 (2006) 7–14.
38、Moh,d Sami Ashhab, Ahmed Al-Salaymeh, Optimization of hot-wire thermal flow sensor based on a neural net model, Applied Thermal Engineering 26 (2006) 948–955.
39、N. Sabat´e, I. Gr`acia, J. Santander, L. Fonseca, E. Figueras, C. Can´e, J.R. Morante, Mechanical characterization of thermal flow sensors membranes, Sensors and Actuators A 125 (2006) 260–266.
40、P. Bruschi, M. Piotto, G. Barillaro, Effects of gas type on the sensitivity and transition pressure of integrated thermal flow sensors, Sensors and Actuators A 132 (2006) 182–187.
41、Rainer Buchner, Christoph Sosna, Marcus Maiwald, Wolfgang Benecke, Walter Lang, A high-temperature thermopile fabrication process for thermal flow sensors, Sensors and Actuators A 130–131 (2006) 262–266.
42、Sung-Cheoul Roh, Yong-Moon Choi, Soo-Yong Kim, Sensitivity enhancement of a silicon micro-machined thermal flow sensor, Sensors and Actuators A 128 (2006) 1–6.
43、 S.H. Oh, S.H. Lee, J.C. Jeon, M.H. Kim, S.S. Lee, ’’Bulk-micromachined circular foil type micro heat-flux sensor’’, Sensors and Actuators A 132 (2006) 581–586.
44、Dong-Kwon Kim, Il Young Han, Sung Jin Kim, Study on the steady-state characteristics of the sensor tube of a thermal mass flow meter, International Journal of Heat and Mass Transfer 50 (2007) 1206–1211.
45、Goker Tuncol, Murat Danisman, Alper Kaynar, E. Murat Sozer, Cotraints on monitoring resin flow in the resin transfer olding (RTM) process by using thermocouple sensors, Composites: Part A 38 (2007) 1363–1386.
46、Zhiyong Tan , Mitsuhiro Shikida , Masafumi Hirota , Yan Xing ,Kazuo Sato , Takuya Iwasaki , Yasuroh Iriye, Characteristics of on-wall in-tube flexible thermal flow sensor under radially asymmetric flow condition, Sensors and Actuators A 138 (2007) 87–96.
47、M. Dijkstra, M.J. de Boer, J.W. Berenschot, T.S.J. Lammerink, R.J. Wiegerink, M. Elwenspoek, Miniaturized thermal flow sensor with planar integrated sensor structures on semicircular surface channels, Sensors and Actuators A 143 (2008) 1–6.
48、Weiping Yan, Henan Li, Yongbian Kuang, Liqun Du, Jihong Guo, Nickel membrane temperature sensor in micro-flow measurement, Journal of Alloys and Compounds 449 (2008) 210–213.
49、國立成功大學微奈米科技研究中心,儀器操作手冊,http://140.116.176.21/
www/index.htm
50、洪益智,鍾震桂,厚膜光阻之堆疊技術與光學微透鏡製作,國立成功大學機械工程研究所碩士論文,民國94年。
51、許育榮,鄧治東,三角型微流道對流之熱傳模擬分析,中原大學機械工程研究所碩士論文,民國94年。
52、CFD Research Corp., CFDRC User Manual. (2003)
53、微機電系統技術與應用, 行政院國家科學委員會精密儀器發展中心出版。(2003)
54、R. Saha and J. A. Barnard, Journal of Crystal Growth, 174, 1997, 495-500.
55、K. Radhakrishnan, N. G. Ing, and R. Gopalakrishnan, Materials Science and Engineering, B57, 1999, 224-227.
56、M. H. Tsai, S. C. Sun, C. E. Tsai, S. H. Chuang, and H. T.Chiu,Journal of Applied Physics, 79 (9), 1996, 6932.
57、L. A. Clevenger, N. A. Bojarczuk, K. Holloway, J. M. E. Happer, C. Cabral Jr., R. G. Schad, F. Cardone, and L. Stolt, Journal of Applied Physics, 73 (1), 1993, 300.
58、M. Takeyama, A. Noya, T. Sase, and A. Ohta, Journal of Vacuum Science & Technology, B 14 (2), 1996, 674.
59、K. Eda, T. Miwa, Y. Taguchi, T. Uwano, IEEE Transactions Microwave Theory Technology, 38, 1990, 1949.
60、P. K. Reddy, S. R. Jawalekar, Vacuum News, 12, 1981, 12.
61、R. E. Hampy, IEEE Transactions Parts Hybrids Packaging, PHP-11, 1975, 263.
62、C. L. Au, W. A. Anderson, Journal of Materials Research, 5(6), 1990, 1224- 1232.
63、Larry Bos, Member, IEEE Transactions on Components, Packaging, and Manufacturing Technology, Part A 17(3), 1994, 359-365.
64、Encyclopedia of Inorganic Chemistry, Vol. 5, 2498.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top