跳到主要內容

臺灣博碩士論文加值系統

(44.200.94.150) 您好!臺灣時間:2024/10/16 15:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳懷民
研究生(外文):Huai-Min Chen
論文名稱:外匯干預的效果
論文名稱(外文):Effects of Foreign Exchange Intervention
指導教授:高櫻芬高櫻芬引用關係
指導教授(外文):Yin-Feng Gau
學位類別:碩士
校院名稱:國立暨南國際大學
系所名稱:國際企業學系
學門:商業及管理學門
學類:企業管理學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:40
中文關鍵詞:外匯干預匯率日本銀行馬可夫轉換模型
外文關鍵詞:Foreign Exchange InterventionExchange RateBank of JapanMarkov Switching Model
相關次數:
  • 被引用被引用:0
  • 點閱點閱:232
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究是採用兩狀態馬可夫轉換模型 (two-state Markov switching model) 來檢驗由日本銀行 (Bank of Japan) 針對美元兌日圓匯率 (yen-dollar) 所執行的外匯干預的效果。在估計模型的參數之前,我們先利用 Hansen (1992, 1996) 所提出的標準化概似比檢定統計量 (standardized likelihood ratio test statistic) 對匯率資料進行檢定,以確認匯率動態存在兩種狀態 (regime)。而檢驗結果拒絕匯率動態只有一種狀態的虛無假說,因此本研究進一步以固定移轉機率馬可夫轉換模型 (fixed transition probability Markov switching model) 檢驗匯率是否出現結構性改變。估計結果顯示雖然平均數並不顯著,但是兩個顯著且差異很大的變異數仍說明了匯率存在兩個狀態。接著,本研究以變動移轉機率馬可夫轉換模型 (time-varying transition probability Markov switching model) 檢驗外匯干預是否能有效改變匯率的走勢。另一方面,本研究也分析前一天發生的干預是否會增加隔天日本銀行進行干預操作的機率。實證結果顯示若日本銀行前一天有進行干預,隔天仍然有干預的機率會增加。
In this study, we use a two-state Markov switching model to examine the effect of foreign exchange intervention operations manipulated by the Bank of Japan (BOJ) on the yen-dollar exchange rates from 1993 to 2006. First, we will test the number of regimes in our exchange rate data by using the standardized likelihood ratio test statistic proposed by Hansen (1992, 1996). We find that the exchange rate can be characterized by a two-state Markov switching model. Second, we will use the fixed transition probability Markov switching model to estimate the dynamics of the exchange rate. Although the two means are not statistically significant, the two different variances suggest that there are two regimes. Third, we will employ the time-varying transition probability Markov switching model to examine whether interventions are effective to reverse the trend of exchange rate. Furthermore, we shall investigate whether interventions occurring at date t-1 will amplify the probability that interventions are conducted at date t. The estimated results suggest that if the BOJ had intervened yesterday, then the probability that the BOJ intervenes today increases.
Contents
Chapter 1.Introduction
1.1 Research Motivation..1
1.2 Research Objectives1..1
Chapter 2.Literature Review
2.1 A Brief History of Coordinated Intervention..3
2.2 Effects of Interventions: Direction, Persistence, and Volatility..3
2.2.1 Direction and Persistence..4
2.2.2 Volatility..6
2.3 Intervention and Event Study..7
2.4 Intervention and Markov Switching Model..8
Chapter 3.Methodology
3.1 Introduction of the Regime-Switching..10
3.2 Markov Chain..13
3.3 Inference about Regimes..14
3.4 Markov-Switching Model with Fixed Transition Probability..17
3.5 Markov-Switching Model with Time-Varying Transition Probability..18
3.6 Empirical Model..20
3.7 Test for the Number of States..23
Chapter 4. Empirical Results
4.1 Data Description..25
4.2 Estimation for An AR(p) Model..27
4.3 Test for the Presence of Markov Process..28
4.4 Estimation for the FTP and the TVTP Model..29
Chapter 5.Conclusion..31
References..38
Figures
Figure 1. Daily Yen-Dollar Exchange Rate and BOJ Intervention..33
Figure 2. Daily Returns of Yen-Dollar Exchange Rate..33
Tables
Table 1. Descriptive Statistics..34
Table 2. Selection of An Optimal Model..34
Table 3. Estimation of An AR(2) Model..35
Table 4. Standardized Likelihood Ratio Statistics..35
Table 5. Hamilton’s FTP model..35
Table 6. Category Statistics of Exchange Rate Changes and Interventions..36
Table 7. Filardo and Gordon’s TVTP mode1..36
Table 8. Success and Failure of Interventions..37
Baillie, R. T. and Osterberg, W. P. (1997). Why Do Central Banks Intervene? Journal of International Money and Finance, 16(6), 909- 919.
Caporaleu, M. and Spagnolo, N. (2004). Modelling East Asian Exchange Rates: A Markov-switching Approach. Applied Financial Economics, 14(4), 233-242.
Chen, S. W. and Lin, J. L. (2000). Modelling Business Cycles in Taiwan with Time-Varying Markov-Switching Models. Academic Economic Papers, 28(1), 17-42.
Cheung, Y. W. and Erlandsson, U. G. (2005). Exchange Rates and Markov Switching Dynamics. Journal of Business & Economic Statistics, 23(3), 314-320.
Dominguez, K. M. and Frankel, J. A. (1993). Does Foreign Exchange Intervention Matter? The Portfolio Effect. American Economic Review, 83(5), 1356-69.
Dominguez, K. M. (1998). Central Bank intervention and Exchange Rate Volatility. Journal of International Money and Finance, 17(1), 161-190.
Dominguez, K. M. (2002). Foreign Exchange Intervention: Did It Work in the 1990s? University of Michigan and NBER Revised Draft.
Dominguez, K. M. and Panthaki, F. (2007). The Influence of Actual and Unrequited Interventions. International Journal of Finance and Economics, 12(2), 171-200.
Engel, C. and Hamilton, J. D. (1990). Long Swings in the Dollar: Are They in the Data and Do Markets Know it? American Economic Review, 80(4), 689-713.
Engel, C. (1994). Can the Markov-Switching Model Forecast Exchange Rates? Journal of International Economics, 36(1-2), 151-165.
Filardo, A. J. (1994). Business-Cycle Phases and Their Transitional Dynamics. Journal of Business & Economic Statistics, 12(3), 299-308.
Filardo, A. J. and Gordon, S. F. (1998). Business Cycle Durations. Journal of Econometrics, 85(1), 99-123.
Hansen, B. E. (1992). The Likelihood Ratio Test under Nonstandard Conditions: Testing the Markov Switching Model of GNP. Journal of Applied Econometrics, 7, S61-S82.
Hansen, B. E. (1996). Erratum: The Likelihood Ratio Test under Nonstandard Conditions: Testing the Markov Switching Model of GNP. Journal of Applied Econometrics, 11(2), 195-198.
Hamilton, J. D. (1989). A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle. Econometrica, 57(2), 357-384.
Hamilton, J. D. (1994). Modeling Time Series with Changes in Regime. Time Series Analysis (pp.677-703). Princeton, New Jersey: Princeton University Press.
Ito, T. (2002). Is Foreign Exchange Intervention Effective? The Japanese Experience in the 1990’s. NBER Working Paper No. 8914.
Ito, T. (2007). Myths and Reality of Foreign Exchange Interventions: An Application to Japan. International Journal of Finance and Economics, 12(2), 133-154.
Kim, C. J. (1994). Dynamic Linear Models with Markov-Switching. Journal of Econometrics, 60(1-2), 1-22.
Kim, S. J. and Sheen, J. (2005). Interventions in the Yen-dollar Spot Market: A Story of Price, Volatility and Volume. Journal of Banking & Finance, 30(11), 3191-3214.
Kirikos, D. G. (2000). Forecasting Exchange Rates out of Sample: Random Walk vs. Markov Switching Regimes. Applied Economics Letters, 7(2), 133-136.
Klaassen, F. (2005). Long Swings in Exchange Rates: Are They Really in the Data? Journal of Business & Economic Statistics, 23(1), 87-95.
Nagayasu, J. (2004). The Effectiveness of Japanese Foreign Exchange Interventions During 1991-2001. Economics Letters, 84(3), 377-381.
Neely, C. J. (2005). An Analysis of Recent Studies of the Effect of Foreign Exchange Intervention. Federal Reserve Bank of St. Louis Review, 87(6), 685-717.
Pinno, K. and Serletis, A. (2005). Long Swings in Canadian Dollar. Applied Financial Economics, 15(2), 73-76.
Sarno, L. and Taylor, M. P. (2001). Official Intervention in the Foreign Exchange Market: Is It Effective and, If So, How Does It Work? Journal of Economic Literature, 39(3), 839-868.
Taylor, M. P. (2004). Is Official Exchange Rate Intervention Effective? Economica, 71(1), 1-11.
Taylor, M. P. (2005). Official Foreign Exchange Intervention As A Coordinating Signal in the Dollar-Yen Market. Pacific Economic Review, 10(1), 73-82.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top