(3.238.186.43) 您好!臺灣時間:2021/02/28 15:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張慧文
研究生(外文):Hui-Wen Chang
論文名稱:新型以苯甲醛與三苯胺衍生物合成之芳香族聚合物與其電致變色及光致變色性質之研究
論文名稱(外文):Synthesis, Electrochromic and Photochromic Properties of Novel Aromatic Polymers from Benzaldehyde and Triphenylamine Derivatives
指導教授:劉貴生,蘇玉龍
指導教授(外文):Guey-Sheng Liou; Yuhlong Oliver Su
學位類別:碩士
校院名稱:國立暨南國際大學
系所名稱:應用化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:76
中文關鍵詞:電洞傳輸聚合物三苯胺苯甲醛縮合聚合電致變色光致變色
外文關鍵詞:hole transport polymertriarylaminebenzaldehydecondensation polymerizationelectrochromicphotochromic
相關次數:
  • 被引用被引用:0
  • 點閱點閱:92
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
一系列新型以三苯胺為主體的芳香族聚合物經由苯甲醛與不同形式的三苯胺衍生物在存在酸性催化劑條件下以縮合聚合的方式被合成。在結構的鑑定上藉由NMR的氫譜與碳譜顯示此親核性取代反應只發生在三苯胺衍生物的對位位置上。這些聚合物在甲苯溶液中的紫外光吸收帶表現在309-324 nm,最大放射波長在藍光區域大約370-417nm。由循環伏安法圖譜得知所有聚合物擁有可逆的氧化還原峰,其氧化電位 (Eonset) 大約是0.42-0. 90 V,顯示這些聚合物具有電化學活性。另外,這些芳香族聚合物溶於氯仿溶液中,在紫外光照射下會展現類似電致變色的光致變色特性,顏色由無色轉變為綠色。所有聚合物擁有高的玻璃轉換溫度 (Tg) 約 197-217 oC及好的溶解度與成模性。這些特別的光氧化形態可能可以被用作新型的光導體材料。
A series of novel triphenylamine-based aromatic polymers were synthesized by condensation polymerization of benzaldehyde with various types of triphenylamine derivatives in the presence of an acid catalyst. Structural characterization by 1H and 13C NMR spectroscopy show that the electrophilic substitution reaction occurs exclusively at the para-position of triphenylamine derivatives. These polymers exhibited UV-vis absorption bands at 309-324 nm in toluene solution. The photoluminescence spectra showed maximum bands around 370-417 nm in the blue region. Cyclic voltammograms of all polymers show reversible oxidation redox peaks and Eonset around 0.42-0.90 V, indicating that the polymers are electrochemically active. These aromatic polymers revealed photochromic characteristics in chloroform under irradiation with light conformity to their electrochromic characteristics, with color change from colorless to green. In addition to high glass transition temperatures (Tg) in the range of 197-217 oC, all the obtained polymers also possess good solubility and film formability. This special photooxidation form might be considered as a novel photoconductor.
TABLE OF CONTENTS

ABSTRACT (in Chinese)…………………...…………........................……………………I
ABSTRACT (in English)….…………………………………………………………….…II
TABLE OF CONTENTS…………….……………….…………...………………...…….III
LIST OF TABLES………………………...………………...……………………….…....VI
LIST OF FIGURES…..……………………………………………….………...……… .VII



Synthesis, Electrochromic and Photochromic Properties of Novel Aromatic Polymers from Benzaldehyde and Triphenylamine Derivatives

GRAPHICAL ABSTRACT …………….…………………..……………….……………...1
CHAPTER1 INTRODUCTION…………………………………………….………….…...2
CHAPTER 2 LITERATURE REVIEW………………………………………….…………4
2.1. Chromism..………………………………………………..................................4
2.2. Thermochromism……………………………………………….……………...5
2.3. Solvatochromism………………………………………………………….……5
2.4. Photochromism………………………………………………………………....6
2.4.1. Classes of Photochromic materials………………………………….…..8
2.4.2. Applications…………………………………………………………....10
2.5. Electrochromism……………………………………………………………...12
2.5.1. Fundamentals of Electrochromism…………….………………………14
2.5.2. Application……………………………………………........………….15
CHAPTER 3 EXPERIMENTAL SECTION...………………………….......……......……16
3.1. Materials…………………………………………………................................16
3.2. Monomer Synthesis………………………………………………..........…….16
3.2.1. 4-methoxytriphenylamine (MOTPA)…......………….………................16
3.2.2. N,N-Bis(4-methoxyphenyl)-N’,N’-diphenyl-p-phenylenediamine
(MOPD1)............................................................................................................17
3.3. Polymer synthesis via the Direct polycondensation..........................................26
3.4. Preparation of the Film…………..…………...……….............................…....28
3.5. Measurements…………………………………………………………………28
CHAPTER 4 RESULTS AND DISCUSSION………………………………….................30
4.1. Polymer Synthesis…………………………..............…………………...........30
4.2. Polymer Properties…………………..…………………………......................36
4.2.1. Basic Characterization......…………………….…………...…………....36
4.2.2. Optical and Electrochemical Properties.......................................….…...42
4.2.3. Electrochromic Characteristics.................................................................50
4.2.4. Photochromic Characteristics...................................................................53
CHAPTER 5 CONCLUSIONS……………………………................................................59
REFERENCES AND NOTES........................................................…….…….....................60


















LIST OF TABLES

1. Reaction Condition and Molecular Weights of Polymers............................................27
2. Inherent Viscosity and Solubility.................................................................................37
3. Thermal Properties.......................................................................................................41
4. Optical and Electrochemical Properties.......................................................................49



















LIST OF FIGURES

1. (a) 1H NMR and (b) 13C NMR spectra of N,N-bis(4-methoxyphenyl)- N’,N’-diphenyl-p-phenylenediamine in DMSO-d6......................................................20
2. (a) 1H NMR and (b) 13C NMR spectra of N,N’-bis(4-methoxyphenyl)- N,N’-diphenyl-p-phenylenediamine in DMSO-d6.………………………….……….21
3. H-H COSY spectrum of N,N-bis(4-methoxyphenyl)- N’,N’-diphenyl-p- phenylenediamine in DMSO-d6.……………………...………………….…….…….22
4. C-H HMQC spectrum of N,N-bis(4-methoxyphenyl)- N’,N’-diphenyl-p- phenylenediamine in DMSO-d6...……………………………………………..……..23
5. H-H COSY spectrum of N,N’-bis(4-methoxyphenyl)- N,N’-diphenyl-p- phenylenediamine in DMSO-d6..………………………………………….…………24
6. C-H HMQC spectrum of N,N’-bis(4-methoxyphenyl)- N,N’-diphenyl-p- phenylenediamine in DMSO-d6..…………………………………………..……...…25
7. The FTIR spectrum of polymer Ic which (a) have no end capped by acetic anhydride (b) have end capped by acetic anhydride.…………...……………………..…….…..32
8. (a) 1H NMR and (b) 13C NMR spectra of Ic in chloroform-d.………............….……33
9. H-H COSY spectrum of polymer Ic in chloroform-d.……………….…………........34
10. C-H HMQC spectrum of polymer Ic in chloroform-d.……………….……..……….35
11. WAXD patterns of the polymer films….…...………………………….…………….38
12. TGA and TMA curves for Ia (TGA :at a scan rate of 20 °C /min ;TMA : heating rate = 10 °C /min; applied force = 10 mN)………………………………….……….39
13. DSC curve for detection the glass transition temperature (Tgs) of polymers Ia-Ie…………..……………………………………………………………………...40
14. Absorption (left) and normalized fluorescence intensity (right) of Ia and Ic in toluene (10-5 M) and solid thin films (thickness: 1-3 μm). a.u.: Arbitrary units…………………………………………………………………….…………….45
15. Transmission UV-visible absorption spectra of polymer films (thickness: 30-50μm)…………………………………………………...………….………….….45
16. Cyclic Voltammograms of (a) polymer Ia and (b) polymer Ic over 40 cyclic scanning in CH2Cl2 solution (10-3 M) containing 0.1M TBAP. Scan rate = 0.05 V/s………………………………………………..…………………………….…….46
17. Electorchromic behavior of Ia in CH2Cl2 solution (5×10-4 M) containing 0.1 M TBAP. Eappl. = 0.00 (■), 0.55 (●), 0.58 (▲), 0.61 (▼), and 0.64 (◆) (V vs. Ag/AgCl)………………………………………………………………………….….47
18. Cyclic Voltammograms of (a) the first oxidation redox of polymer Id (b) the first and second oxidation redox of polymer Id in CH2Cl2 solution (10-3 M) containing 0.1M TBAP. Scan rate = 0.05 V/s………………………………………………………….48
19. Electorchromic behavior of Id in CH2Cl2 solution (5×10-4 M) containing 0.1M TBAP. (A) Eappl. = 0.00 (■), 0.46 (●), 0.49 (★), 0.52 (▲), 0.55 (▼), 0.58 (□), and 0.61 (◆). (B) Eappl. = 0.91 (■), 0.94 (●), 0.97 (★), 1.00 (▲), 1.03 (▼), 1.06 (□), and 1.09 (◆), (V vs. Ag/AgCl)…………………………………………………….….….51
20. Electorchromic behavior of Ie in CH2Cl2 solution (5×10-4 M) containing 0.1M TBAP. (A) Eappl. = 0.00 (■), 0.46 (●), 0.49 (★), 0.52 (▲), 0.55 (▼), 0.58 (□), and 0.61 (◆). (B) Eappl. = 0.90 (■), 0.93 (●), 0.96 (★), 0.99 (▲), 1.02 (▼), 1.05 (□), and 1.08 (◆), (V vs. Ag/AgCl)……………………………………………….…………..52
21. (A) Electorchromic behavior of Ic in CH2Cl2 solution (5×10-4 M) containing 0.1M TBAP. Eappl. = 0.00 (■), 0.80 (●), 0.83 (★), 0.86 (▲), 0.89 (▼), and 0.92 (□), (V vs. Ag/AgCl). (B) Photochromic behavior of Ic in CHCl3 solution (10-4 M) by UV irradiation; 0 s (■), 200 s (●), 400 s (▲), 600 s (▼) and 800 s (□), (Excited 330 nm)………………………………………………………………………….………..56
22. Photochromism and electorchromism of Ic in CH2Cl2 solution containing 0.1 M TBAP, and hold at -1.0 V (V vs. Ag/AgCl) for 200 s (▲), 600 s (▼), 1600 s (◆), and 2500 s (★)……………………………………………………………………………57
23. Photochromism of PMeOTPA in CHCl3 solution (10-4 M) after UV irradiation (Excited 365 nm); irradiation time = 0 s (■), 100 s (●), 200 s (▲), 400 s (▼), 600 s (◆), 800 s (★)…………………………………………………………………….....58
1.Mortimer, R. J. Chem. Soc. Rev. 1997, 26, 147.
2.Monk, P. M. S.; Mortimer, R. J.; Rosseinsky, D. R. Electrochromism and Electrochromic DeVices; Cambridge University Press: Cambridge, UK, 2007.
3.Gao, J.; Liu, D. G.; Sansinena, J. M.; Wang, H. L. Adv. Funct. Mater. 2004, 14, 537.
4.Walczak, R. M.; Reynolds, J. R. Adv. Mater. 2006, 18, 1121.
5.Groenendaal, L.; Zotti, G.; Aubert, P. H.; Waybright, S. M.; Reynolds, J. R. Adv. Mater. 2003, 15, 855.
6.Unur, E.; Jung, J.-H.; Mortimer, R. J.; Reynolds, J. R. Chem. Mater. 2008; 20(6); 2328-2334.
7.Sonmez, G.; Shen, C. K. F.; Rubin, Y.; Wudl, F. Angew. Chem. 2004, 43, 1498.
8.Argun, A. A.; Aubert,P. H.; Thompson, B. C.; Schwendeman, I.; Gaupp, C. L.; Hwang, J.; Pinto, N. J.; Tanner, D B.; MacDiarmid, A. G.; Reynolds, J. R. Chem.Mater. 2004, 16, 4401.
9.Thelakkat, M. Macromol. Mater. Eng. 2002, 287, 442
10.Shirota, Y. J. Mater. Chem. 2005, 15, 75.
11.Beaupre,S.; Dumas, J.; Leclerc, M. Chem. Mater. 2006, 18, 4011.
12.Choi, K.; Yoo, S. J.; Sung, Y. E.; Zentel, R. Chem. Mater. 2006, 18, 5823.
13.Otero, L.; Sereno, L.; Fungo, F.; Liao, Y. L.; Lin, C. Y.; Wong, K. T. Chem. Mater. 2006, 18, 3495.
14.Natera, J.; Otero, L.; Sereno, L.; Fungo, F.; Wang, N. S.; Tsai, Y. M.; Hwu, T. Y.; Wong, K. T. Macromolecules 2007, 40, 4456.
15.Liou, G. S.; Chang, C. W. Macromolecules 2008, 41, 1667.
16.Su, T. H.; Hsiao, S. H.; Liou, G. S. J. Polym. Sci. Part A: Polym Chem. 2005, 43, 2085.
17.Liou, G. S.; Hsiao, S. H.; Su, T. H. J. Mater. Chem. 2005, 15, 1812.
18.Liou, G. S.; Hsiao,S. H.; Chen, H. W. J. Mater. Chem. 2006, 16, 1831.
19.Liou, G. S.; Hsiao, S. H.; Huang, N. K.; Yang, Y. L. Macromolecules 2006, 39, 5337.
20.Cheng, S. H.; Hsiao, S. H.; Su, T. H.; Liou, G. S. Macromolecules 2005, 38, 307.
21.Seo, E. T.; Nelson, R. F.; Fritsch, J. M.; Marcoux, L. S.; Leedy, D. W.; Adams, R. N. J. Am. Chem. Soc. 1966, 88, 3498.
22.Nelson, R. F.; Adams, R. N. J. Am. Chem. Soc. 1968, 90, 3925.
23.Chiu, K. Y.; Su, T. H.; Li, J. H.; Lin, T. H.; Liou, G. S.; Cheng, S. H. J. Electroanal. Chem. 2005, 575, 95.
24.Wienk, M. M.; Janssen, R. A. J. J. Am. Chem. Soc. 1997, 119, 4492.
25.Yu, W. L.; Pei, J.; Huang, W.; Heeger, A. J. Chem. Commun. 2000, 681.
26.Nomura, M.; Shibasaki, Y.; Ueda, M. Macromolecules 2004, 37, 1204
27.Strzelec, K.; Tsukamoto, N.; Kook, H. J.; Sato, H. Polym. Int. 2001, 50, 1228.
28.Son, J. M.; Mori, T.; Ogino, K.; Sato, H. Macromolecules. 1999, 32, 4849.
29.Shikatani, Y.; Kataoka, N.; Shimo, Y.; Kuroda, N.; Matsuura, K. U.S. Patent 5,006,633, 1991.
30.Nishikitani, Y; Kobayashi, M; Uchida, S; Kubo, T. Electrochimica Acta. 2001, 46, 2035.
31.Murray, K.A.; Holmes, A.B.; Moratti, S.C.; Rumbles, G. J. Mater. Chem. 1999, 9, 2109
32.Ihn, K.; Moulton, J.; Smith, P. J. Polym. Sci. Part B, Polym Phys.1993, 31, 735
33.Mardelen, J.; Samuelsen, E.; Pendersen, A. Sythn. Met. 1993, 55, 378
34.Meer, E. T. Ann. Chem. 1876, 181, 1
35.Masahiro, I. Chemical Reviews. 2000, 100, 1685
36.G.H. Brown, Photochromism, John Wiley & Sons Inc. 1971
37.Photochromism: Molecules and Systems (Heinz Durr and Henri Bouas-Laurent), ISBN:978-0444513229
38.Kawata, S.; Kawata, Y. Chem. Rev. 2000, 100, 1777-1788
39.Tamai, N.; Miyasaka, H. Chem. Rev. 2000, 100, 1875-1890
40.Irie, M. Chem. Rev. 2000, 100, 1685-1716
41.Yamase, T. Chem. Rev. 1998, 98, 307-325
42.(a) Evans, R. A.; Hanley, T. L.; Skidmore, M. A.; Davis, T. P.; Such, G. K.; Yee, L. H.; Ball, G. E.; Lewis, D. A. Nature Materials. 2005, 4, 249-253; (b) Such, G. K.; Evans, R. A.; Davis, T. P. Macromolecules, 2006, 39, 1391-1396; Australian Journal of Chemistry, 2005, 58, 825-830
43.Hirshberg, Y. J. Am. Chem. Soc. 1956; 78, 2304 – 2312
44.Monk, P. M. S.; Mortimer R. J.; Rosseinsky, D. R. Electrochromism: Fundamentals and Applications; VCH: Weinheim, Germany, 1995.
45.Platt, J. R. J. Chem. Phys. 1961, 34, 862.
46.(a) Deb, S. K. Appl. Opt, Suppl. 1969, 3, 192-195 (b) Deb, S. K. Philos. Mag. 1973, 27, 801.
47.Salaneck, W.R.; Clark, D.T.; Samuelsen, E.J. Science and Aplications of Conducting Polymers, 1991
48.Faughnan, B. W.; Crandall, R. S.; Heyman, P. M. RCA Rev. 1975, 36, 177,
49.Cottrell, F.G.; Z. Physik. Chem.1902, 42, 385,
50.Jasinski, R. J. J. Electrochem. Soc. 1977, 124, 637,
51.Beni, G.; Rice, C.E.; Vashishta, P.; Mundy,J.N.; Shenoy, G. K. Fast Ion Transport in Solids: Electrodes and Electrolytes, Elsevier, 1979
52.Randin, J. P. J. Electrochem. Soc. 1982, 129, 1215
53.Scharifker, B.; Wehrmann, C. J. Electrochem. Soc. 1985, 185, 93
54.Rosseinsky, D. R.; Slocombe, J. D.; Soutar, A.M.; Monk, P. M. S.; Glidle, A. J. Electroanal. Chem. 1989, 258, 233,
55.Rosseinsky, D. R.; Monk, P. M. S.; Hann, R. A. Electrochim. Acta. 1990, 35, 1113,
56.Grant, B.; Clecak, N.; Oxsen, M.; Jaffe, A.; Kellar, G. J. Org. Chem. 1980, 45, 702
57.Irvine, J. T. S.; Eggins, B. R.; Grimshaw, J. J. Electroanal. Chem.1989, 271, 161
58.Liou, G. S.; Yang, Y, L.; Chen, W. C.; Su, Y, L. J. Polym. Sci. Part A: Polym. Chem. 2007, 45, 3292
59.Chiu, K. Y.; Su, T. H.; Huang, C. W.; Lin, T. H.; Liou, G. S.; Cheng, S. H. J Electroanal Chem 2005, 578, 283.
60.Gujadhur, R.; Venkataraman, D.; Kintigh, J. T. Tetrahedron Lett. 2001, 42, 4791.
61.Urgaonkar, S.; Xu, J. H.; Verkade, J. G. J. Org. Chem. 2003, 68, 8416.
62.Lewis, G. N.; Lipkin, D. J. Am. Chem. Soc. 1942, 64, 2801.
63.Fitzgerald, E. A.; Wuelfing, P.; Richtol, H. H. J. Phys. Chem. 1971, 75, 2737.
64.Duxbury, D. F. Chem Rev. 1993, 93, 381.
65.MacLachlan, A.; Riem, R. H. J. Org. Chem. 1971, 36, 2275.
66.MacLachlan, A. J. Phys. Chem. 1967, 71, 718.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 具有芳香氧取代基之三苯胺結構之芳香族聚醯胺及聚醯亞胺之合成與光電性質研究
2. 含三苯胺結構之新型聚醯胺及聚醯亞胺之合成與性質研究
3. 合成新型含三苯胺結構之聚醯胺及其性質研究
4. 利用鈴木偶合聚合技術製備新型含三苯胺基團共軛高分子材料及其取代基效應
5. 新型含三苯胺基團之共軛高分子材料:合成、理論計算、光電特性及電致變色性質研究
6. 新型具雙三苯胺醚或三甲基取代三苯胺基團之芳香族高分子合成、電化學、電致變色與氣體穿透特性之研究
7. 具有2,3-二甲基吲哚基取代之三苯胺結構的新型芳香族聚醯胺及聚醯亞胺之合成與電致變色之研究
8. 具二甲胺基取代的三苯胺結構之芳香族聚醯亞胺之合成與其性質之研究
9. 新型全芳香族側鏈含二苯胺基團聚脲之合成、熱性質、光物理性質、電化學性質及電致變色性質之研究
10. 具不同推拉電子基團之三苯胺之芳香族高分子之合成與光致發光,電化學及電致變色性質之研究
11. 新型具4-甲氧基三苯胺基團之芳香族高分子之合成與電化學及電致變色性質之研究
12. 側鏈含金剛烷基取代之苯氧基及主鏈具三苯胺結構的新型聚醯亞胺之合成及其性質之研究
13. 新型具三苯胺側鏈基團之芳香族高分子之合成與電化學及電致變色性質之研究
14. 具有對位單氟取代三苯胺基團之新型芳香族聚合物的合成與光致發光及電致變色性質之研究
15. 側鏈含金剛烷基取代之苯氧基及主鏈具三苯胺結構的新型聚醯胺之合成與光致發光及電致變色性質之研究
 
無相關期刊
 
1. 氧化鈦薄膜之非均相光催化作用應用光致變色之研究
2. 含鎢氧化物光致變色高分子混成薄膜之製備及其性質分析
3. 新潁光致變色材料之鑑定及製備
4. 以高壓均質製備幾丁聚醣奈米乳滴乳化液及其性質之研究
5. 新型聯併苯茚滿烯二酮衍生物之合成、晶體結構、光致變色性質及其在單層異質接面有機光伏電池之應用
6. 具三甲氧基活化之三苯胺結構的新型聚醯胺及聚醯亞胺的合成與光致發光及電致變色性質研究
7. 新型側鏈含蒽胺發光團芳香族高分子之合成與光致發光及電化學性質之研究
8. 合成以triketone為主體之潛在溶劑致變色試劑及設計以香豆素為主體之雙環化合物作為潛在之光致變色材料及分子開關
9. 新型含三苯胺基團之聚酯合成與光致發光及電致變色性質研究
10. 2,5-簡菠二烯系統之光致變色研究
11. 光致變色性強誘電性側鏈液晶高分子之製備及在光配向控制上之應用
12. 具有光致變色及熱敏性凝膠材料之合成及其性質之研究
13. 新型含硫之聚醯亞胺-二氧化鈦混成奈米複合光學材料之設計、合成與其性質研究
14. 新型具四苯基聯苯胺或側鍊蒽醌基團之芳香族高分子合成與紫外光/可見光/近紅外光電致變色特性之研究
15. 新型具雙三苯胺醚或三甲基取代三苯胺基團之芳香族高分子合成、電化學、電致變色與氣體穿透特性之研究
 
系統版面圖檔 系統版面圖檔