(3.237.97.64) 您好!臺灣時間:2021/03/03 06:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:徐瑋澤
研究生(外文):Wei-Tse Hsu
論文名稱:氧化鋅晶粒大小及氧化鎂鋅之鎂含量對激子-縱模光聲子作用的影響
論文名稱(外文):Effect of grain size and Mg content of MgxZn1-xO on the exciton-longitudinal optical phonon interaction
指導教授:謝文峰謝文峰引用關係
指導教授(外文):Wen-Feng Hsieh
學位類別:碩士
校院名稱:國立交通大學
系所名稱:光電工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:41
中文關鍵詞:溶膠-凝膠氧化鋅氧化鎂鋅激子縱模光聲子
外文關鍵詞:Sol-gelZnOMgZnOexciton-LO phonon
相關次數:
  • 被引用被引用:0
  • 點閱點閱:204
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:33
  • 收藏至我的研究室書目清單書目收藏:0
利用量測由溶膠-凝膠製成不同晶粒大小的氧化鋅及不同鎂含量(0<x<0.05)氧化鎂鋅粉末(MgxZn1−xO)的變溫螢光光譜,可以得到激子-縱模光聲子(LO-phonon)之間耦合的關係。在氧化鋅量子點系統中不明顯激子的縱模光聲子映稱(LO-phonon replicas),以及較小的13 K至 300 K激子能量差顯示激子-縱模光聲子耦合強度的降低。從氧化鋅量子點系統及氧化鎂鋅粉末激子游離能的變大可得知激子波耳半徑的變小。這個結果將導致激子結構極性降低,以致於當氧化鋅量子點縮小及氧化鎂鋅中鎂含量增加,激子-縱模光聲子的交互作用將隨之減弱。
The coupling between exciton and longitudinal optical (LO) phonon was investigated by using of the temperature-dependent photoluminescence from various sizes of ZnO grain and MgxZn1−xO powders in the range of 0<x<0.05 prepared by sol-gel synthesis. The unapparent LO-phonon replicas of free exciton emission in ZnO quantum dots (QDs) system and the smaller free exciton energy difference between 13 K and 300 K reveal decreasing weighting of exciton�{LO phonon coupling strength. From ZnO QDs system and MgxZn1-xO powders, the increase of the exciton binding energy resulting from the decrease of the exciton Bohr radius makes the exciton less polar that is responsible for reducing the coupling strength of exciton-LO phonon as shrinking ZnO QDs size and increasing Mg content.
Abstract (in Chinese) i
Abstract (in English) ii
Acknowledgement iii
Content v
List of figures viii

Chapter 1 Introduction 1
1.1 Basic property of ZnO and significance of ZnO related photonic devices 1
1.2 Problem description and Motivation 1
1.3 Organization of thesis 2
Chapter 2 Theoretical background 3
2.1 Sol-gel method 3
2.2 Quantum confinement effect 5
2.2.1 Weak confinement 5
2.2.2 Strong confinement 7
2.3 Fröhlich interaction 8
2.4 Photoluminescence characterization 12
2.4.1 General concepts 12
2.4.2 Exciton-related emission 14
2.4.2.1 Free excitons and polaritons 14
2.4.2.2 LO-phonon replicas 19
2.4.3 The information obtained from PL spectrum 20
2.4.3.1 Binding energy 21
2.4.3.2 Band gap energy variation with temperature 21
Chapter 3 Experiment detail 23
3.1 Sample preparation 23
3.1.1 ZnO quantum dots synthesized by varying concentration of zinc precursor 23
3.1.2 MgxZn1-xO powders synthesized by varying molar ratio of Mg/Zn 23
3.2 Photoluminescence system 23
Chapter 4 Results and discussions 25
4.1 ZnO quantum dots system 25
4.1.1 Photoluminescence spectrum for different sizes of ZnO particles 25
4.1.2 Temperature-dependent PL for different sizes of ZnO particles 26
4.1.3 The weighting of exciton-LO phonon coupling strength (��0) 27
4.1.4 Binding energy 28
4.1.5 Bohr radius (aB) 28
4.1.6 Correlation of ���~�nand aB 29
4.1.7 Summary 30
4.2 MgxZn1-xO alloy system 30
4.2.1 Morphology and temperature-dependent photoluminescence 30
4.2.2 Binding energy 32
4.2.3 The weighting of exciton-LO phonon coupling strength (��0) 33
4.2.4 Correlation of ���~�nand aB 34
4.2.5 Summary 36
Chapter 5 Conclusion and perspective 37
5.1 Conclusion 37
5.2 Perspective 37
References 39
[1] C. R. Ding, S. W. Li , H. Z. Wang, Appl. Phys. Lett. 90, 241918 (2007).
[2] C. Y. Lee, Y. T. Huang, W. F. Su, and C. F. Lin, Appl. Phys. Lett. 89, 231116 (2006).
[3] K. Tachibana, T. Someya, Y. Arakawa, R. Werner, A. Forchel, Appl. Phys. Lett. 75, 2605 (2005).
[4] G. Yusa, H. Sakaki, Superlattices and Microstructures 25, 247 (1999).
[5] A. Murayama, T. Furuta, K. Hyomi, I. Souma, Y. Oka, D. Dagnelund, I. A. Buyanova, and W. M. Chen, Phys. Rev. B 75, 195308 (2007).
[6] Y. H. Cho, H. S. Kwack, B. J. Kwon, J. Barjon, J. Brault, B. Daudin, and L. S. Dang, Appl. Phys. Lett. 89, 251914 (2006).
[7] J. Li, S. H. Wei, S. S. Li, and J. B. Xia, Phys. Rev. B 74, 081201 (2006).
[8] J. H. Lim, C. K. Kang, K. K. Kim, I. K. Park, D. K. Hwang, and S. J. Park, Adv. Mater. 18, 2720 (2006).
[9] J. Y. Bae, J. Yoo, and G. C. Yi, Appl. Phys. Lett. 89, 173114 (2006).
[10] H. Shibata, H. Tampo, K. Matsubara, A. Yamada, K. Sakurai, S. Ishizuka, and S. Niki, and M. Sakai, Appl. Phys. Lett. 90, 124104 (2007).
[11] P. Ramvall, P. Riblet, S. Nomura, and Y. Aoyagi, J. Appl. Phys. 87, 3883 (2000).
[12] H. M. Cheng, K. F. Lin, H. C. Hsu, W. F. Hsieh, Appl. Phys. Lett. 88, 261909 (2006).
[13] R. Chang, and S. H. Lin, Phys. Rev. B 68, 045326 (2003).
[14] H. D. Sun, T. Makino, Y. Segawa, M. Kawasaki, A. Ohtomo, K. Tamura, and H. Koinuma, Appl. Phys. Lett. 78, 2464 (2001).
[15] C. J. Brinker and G. W. Scherer, “Sol-Gel Sience”, p. 303.
[16] C. F. Klingshirn, “Semiconductor Optics”, p. 169. (1997)
[17] Sun-Bin Yin, “Fabrication and Characterization of CdS and ZnSe Microcrystalline Doped Glass Thin Films by Pulsed Laser Deposition”, p. 7. National Chiao Tung University Department of Photonics, (1999).
[18] M. A. Stroscio and M. Dutta, “Phonons in Nanostructures”, p. 41, Cambridge University press, (2005).
[19] C. F. Klingshirn, "Semiconductor Optics" , Springer, Berlin, (1997)
[20] A. Teke, U. Ozgur, S. Dogan, X. Gu, and H. Morkoc, Phys. Rev. B, 70, 195207 (2004).
[21] D. S. Jiang, H. Jung, and K. Ploog, J. Appl. Phys. 64, 1371 (1988).
[22] G. Ortner, M. Schwab, and M. Bayer, Phys. Rev. B, 72, 085328 (2005).
[23] C. J. Pan, K. F. Lin,W. T. Hsu, and W. F. Hsieh, Appl. Phys. Lett. 91, 111907 (2007).
[24] Z. D. Fu, Y. S. Cui, S. Y. Zhang, J. Chen, D. P. Yu, S. L. Zhang, L. Niu and J. Z. Jiang, Appl. Phys. Lett. 90, 263113 (2007).
[25] V. A. Fonoberov and A. A. Balandin, Appl. Phys. Lett. 85, 5971 (2004).
[26] C. B. Duke and G. D. Mahan, Phys. Rev. 139, 1965 (1965).
[27] S. J. Sheih, K. T. Tsen, D. K. Ferry, A. Botchkarev, B. Sverdlov, A. Salvador, and H. Morkoc, Appl. Phys. Lett. 67, 1757 (1995).
[28] N. Zettili, Quantum Mechanics, Concepts and Applications (2004).
[29] S.A. Studenikin, N. Golego, M. Cocivera, J. Appl. Phys. 84, 2287 (1998).
[30] R. T. Senger, and K. K. Bajaj, Phys. Rev. B 68,045313 (2003).
[31] K. F. Lin, H. M. Cheng, H. C. Hsu, L. J. Lin, and W. F. Hsieh, Chem. Phys. Lett. 409, 208 (2005).
[32] A. Teke, U. Ozgur, S. Dogan, X. Gu, H. Morkoc, B. Nemeth, J. Nause, and H. O. Everitt, Phys. Rev. B 70, 195207 (2004).
[33] B. P. Zhang, N. T. Binh, Y. Segawa, K. Wakatsuki, and N. Usami, Appl. Phys. Lett. 83, 1635 (2003).
[34] B. P. Zhang, N. T. Binh, Y. Segawa, Y. Kashiwaba, and K. Haga, Appl. Phys. Lett. 84, 586 (2004).
[35] A. Yamamoto, K. Miyajima, T. Goto, H. J. Ko, and T. Yao, J. Appl. Phys. 90, 4973 (2001).
[36] M. Lorenz, E. M. Kaidashev, A. Rahm, Th. Nobis, J. Lenzner, G. Wagner, D. Spemann, H. Hochmuth, and M. Grundmann, Appl. Phys. Lett. 86, 143113 (2005).
[37] A. Kobayashi, O. F. Sankey, S. M. Volz, and J. D. Dow, Phys. Rev. B 28, 935 (1983).
[38] K. F. Lin, C. J. Pan, and W. F. Hsieh, submitted to Appl. Phys. Lett.
[39] D. W. Jenkins, and J. D. Dow, Phys. Rev. B 39, 3317 (1989).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔