(3.238.186.43) 您好!臺灣時間:2021/03/05 22:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:葛祖榮
論文名稱:退火和接面修飾對高分子光伏元件之影響研究
論文名稱(外文):Studies of the effects of annealing and interface modification on the performance of polymer photovoltaic devices
指導教授:陳方中陳方中引用關係
學位類別:博士
校院名稱:國立交通大學
系所名稱:光電工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:99
中文關鍵詞:高分子太陽能電池光伏元件
外文關鍵詞:polymersolar cellsphotovoltaicsmicrowave annealing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:1311
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著能源問題的日益嚴重,太陽能電池的研究更是如火如荼的發展,近年來高分子太陽能電池之光電轉換效率已達5%,主要是利用P3HT/PCBM [poly(3-hexylthiophene) / [6,6]-phenyl C61-butyric acid methyl ester]等這類有機材料所形成的p-n結構所製作而成,由於這類有機太陽能電池具有成本低、重量輕、具可撓性及容易製造大面積元件等優勢,研究提升製程速度和效率便可使太陽能電池的價格和效能更具競爭力。

由於溶劑退火對高分子太陽能電池而言是一種相當有效能提昇效率的一種方式。因此,我們首先利用光譜和形貌的鑑定來研究製程中兩種重要的參數p-n組成比例與揮發速度對元件效率的影響,當P3HT:PCBM組成比例在1:1時,可以發現有最好的光電轉換效率,當PCBM增加時,主動層的吸收和結晶性有明顯降低,但由雷射共聚焦顯微鏡可以觀察到,當在比例為1:1,確實有均勻的相分離同時也有最多的激子分解位置,利用這些分解位置可以提升電子電洞產生機率,近而提升高分子太陽能電池之光電轉換效率。主動層對溶劑揮發速度的比較,可以發現揮發速度越慢,可以提升主動層的結晶性和吸收,此外,由吸收峰的紅移證實慢揮發速度可以使共軛高分子鏈緊密排列。最後,由光學模擬,可以得知其元件吸收增加來自於溶劑退火使主動產生光學漸變結構,使更多光能被多層薄膜太陽能電池所吸收。

為了增進產率,我們利用微波加熱的方式處理高分子太陽能電池並提升其光電轉換效率,微波會選擇性加熱主動層和金屬陰極,但不會造成能量浪費在ITO基板上,此外,金屬因其厚度小於微波的穿透深度,造成金屬陰極會吸收微波能量,產生加熱。最後,在加熱只要短短1.5分鐘內,即可以使高分子太陽能電池達到光電轉換效率達3.6%,,因此,高分子太陽能電池可以利用這類微波退火在一個短暫的時間。有效提升光電轉換效率。

為了追求更高的光電轉換效率,可以利用降低在太陽能電池等效電路中的串聯電阻,當甘露醇被添加入PEDOT:PSS中時,其導電性可以提升40倍,此外,製成光伏元件後,其光電轉換效率有提升,且串聯電阻也有所降低的趨勢。其中短路電流可從12增加到14.7mA/cm2.,最後,當甘露醇添加到60mg/mL時,太陽能電池的光電轉換效率可以達到5.2%。
The power conversion efficiency of organic photovoltaic devices up to ~5% has been achieved recently by creating organic p-n bulk-heterojunction, such as that of p-type poly(3-hexylthiophene) (P3HT) and n-type [6,6]-phenyl C61-butyric acid methyl ester (PCBM), in the active layer. Because of the advantages, such as low-cost, light-weight, flexible and large area fabrication capability, developing high throughput and efficiency methods are thus essential to enable the photovoltaic system more competitive in price and performance.

Solvent annealing is one of the candidates to improve the efficiency of solar cells. For investigating the effect of solvent annealing on the performance of polymer solar cells, we studied two important parameters such as the composition ratio and solvent evaporation by several measurements and morphology characterizations. The optimized composition ratio of P3HT/PCBM was 1 to 1 from light J-V curves and EQE value. When the concentration of PCBM increases, the light absorption and crystallinity of P3HT were reduced. The confocal laser scanning microscopy (CLSM) shows that the uniform and large amounts of interface area were obtained while ratio is equal to one. As a result, the moderate quantity of PCBM can effectively create exciton dissociation cites, to produce free electrons and holes and improve the performance of polymer solar cells. As for the influence of solvent evaporation, the crystallinity and light absorption was improved in longer drying time. In addition, red-shift of vibration peaks indicates the conjugated polymer chain has closed packing structure. From the optical sitmulation, the higher absorption in the active layer was resulted from optimized index-matching to form grading structure in the multi-layer device architecture.

To increase the fabrication throughput, we demonstrated a microwave annealing method to treat the polymer devices and found that it will increase the performance of the photovoltaic cells. The microwave irradiation will selectively heat the active layer and cathode and reduce energy loss in the ITO substrate. The metal cathode heat by microwave is due to the thickness which is lower than the penetration depth of microwave. Finally, the optimized efficiency of polymer solar cells can be improved to 3.6% in only 1.5 min. The microwave is an efficient way to improve the performance of the photovoltaic device.

To pursue higher power conversion efficiency in polymer PV, highly conductive PEDOT:PSS was used to reduce the series resistance in equivalent circuit of the polymer solar cells When the mannitol doped in the PEDOT:PSS, the conductivity was 40 fold improvement compared to the pristine device. The power conversion efficiency was improved and series resistance was reduced as mannitol concentration increased. Comparing with the pristine PEDOT:PSS,. Thus, the short circuit current increased from 12 to 14.7 mA/cm2. Finally, the optimized power conversion of polymer solar cell was 5.2% with 60mg/mL manntiol doping.
Chapter 1
1. Introduction
1.1 Overview……………………………………………………………….……...1
1.2 Thesis organization……………………………………………..…….…….....4
1.3 Introduction to conjugated polymer…………………………………….……..5
1.3.1 Conjugated polymer semiconductors…………………………..……...5
1.3.2 Excitons in conjugated polymers……………………………...………7
1.3.3 Carrier/exciton transport in conjugated polymers………………...…...9
1.4 Polymer PV mechanism and material requirement…………………………..13
1.4.1 Principle of operation………………………………………………...13
1.4.2 Material requirement………………………………….……..……….14
1.5 Conjugated polymers for photovoltaic devices………………………………16
1.6 Photovoltaic characterization of polymer solar cells………………...………19
1.6.1 Equivalent circuit diagram…………………………………………...19
1.6.2 Short circuit current, open circuit voltage, and fill factor….………...21
1.6.3 Photoresponsivity, External quantum efficiency, and power conversion efficiency……………………………………………………………..23

Chapter 2
Experimental Materials and Methods
2.1 Material preparation………………………………………………………….28
2.1.1 Material of active layer…………………………………….…………28
2.1.2 Electrode materials……………………….………………….........….30
2.2 Fabrication of polymer photovoltaic devices………………………………...32
2.3 Photovoltaic cell fabrication………………………………………………….33
2.3.1 Device performance…………………………….……………………33
2.3.2 Characterization of the active layer…………………………………..34

Chapter 3
Investigation of composition ratio on the morphology and solvent annealing on the optical properties of P3HT/PCBM blends
3.1 Introduction…………………………………………………………………..37
3.2 Characterization of composition ratio and evaporation time in the solvent annealing process………………………………………………………………...39
3.3 Results and discussion………………………………………………………..40
3.3.1The effect of composition ratio in P3HT/PCBM blends………………..40
3.3.2The effect of evaporation time in P3HT/PCBM blends…………...……48
3.4 Summary………………..……………………………………………………56
Chapter 4
Microwave annealing for polymer photovoltaic device
4.1 The principle and property of microwave heating …………………………..57
4.2 Experimental material and microwave condition…………………………….59
4.3 Results and discussion………………………………………………………..61
4.4 Summary…………………………………………………………………..…69


Chapter 5
Highly efficient polymer photovoltaic devices based on modified buffer layers
5.1 Introduction…………………………………………………………………..70
5.2 Material preparation and deice fabrication…………………………………...72
5.3 Results and discussion………………………………………………………..73
5.3.1 Device characterization………………………………………………...74
5.3.2 The mechanism of efficiency improvement in polymer PVs by doped PEDOT:PSS………………………………………………………………….77
5.4 Summary……………………………………………………………………..81

Chapter 6
Conclusion………..…………..……………………………………………………...82

References………………..……………………..…………………………………...89
1. Gledhill, S. E.; Scott, B.; Gregg, B. A., Organic and nano-structured composite photovoltaics: An overview. Journal of Materials Research 2005, 20, (12), 3167.
2. Marigo, N., The Chinese silicon photovoltaic industry and market: A critical review of trends and outlook. Progress in Photovoltaics 2007, 15, (2), 143.
3. van Sark, W.; Brandsen, G. W.; Fleuster, M.; Hekkert, M. P., Analysis of the silicon market: Will thin films profits Energy Policy 2007, 35, (6), 3121.
4. Shah, A.; Torres, P.; Tscharner, R.; Wyrsch, N.; Keppner, H., Photovoltaic technology: The case for thin-film solar cells. Science 1999, 285, (5428), 692.
5. Forrest, S. R., The limits to organic photovoltaic cell efficiency. MRS Bulletin 2005, 30, (1), 28.
6. Forrest, S. R., The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 2004, 428, (6986), 911.
7. Hung, L. S.; Chen, C. H., Recent progress of molecular organic electroluminescent materials and devices. Materials Science & Engineering R-Reports 2002, 39, (5-6), 143.
8. Dimitrakopoulos, C. D.; Malenfant, P. R. L., Organic thin film transistors for large area electronics. Advanced Materials 2002, 14, (2), 99.
9. Nunzi, J. M., Organic photovoltaic materials and devices. Comptes Rendus Physique 2002, 3, (4), 523.
10. Brabec, C. J.; Padinger, F.; Hummelen, J. C.; Janssen, R. A. J.; Sariciftci, N. S., Realization of large area flexible fullerene - conjugated polymer photocells: A route to plastic solar cells. Synthetic Metals 1999, 102, (1-3), 861.
11. Knobloch, A.; Manuelli, A.; Bernds, A.; Clemens, W., Fully printed integrated circuits from solution processable polymers. Journal of Applied Physics 2004, 96, (4), 2286.
12. Andersson, P.; Nilsson, D.; Svensson, P. O.; Chen, M. X.; Malmstrom, A.; Remonen, T.; Kugler, T.; Berggren, M., Active matrix displays based on all-organic electrochemical smart pixels printed on paper. Advanced Materials 2002, 14, (20), 1460.
13. Dennler, G.; Sariciftci, N. S., Flexible conjugated polymer-based plastic solar cells: From basics to applications. Proceedings of the IEEE 2005, 93, (8), 1429.
14. Gunes, S.; Neugebauer, H.; Sariciftci, N. S., Conjugated polymer-based organic solar cells. Chemical Reviews 2007, 107, (4), 1324.
15. Moliton, A.; Nunzi, J. M., How to model the behavior of organic photovoltaic cells. Polymer International 2006, 55, (6), 583.
16. Mihailetchi, V. D.; Xie, H. X.; de Boer, B.; Popescu, L. M.; Hummelen, J. C.; Blom, P. W. M.; Koster, L. J. A., Origin of the enhanced performance in poly(3-hexylthiophene): [6,6]-phenyl C-61-butyric acid methyl ester solar cells upon slow drying of the active layer. Applied Physics Letters 2006, 89, (1), 012107.
17. Horowitz, G., Organic thin film transistors: From theory to real devices. Journal of Materials Research 2004, 19, (7), 1946.
18. Schouten, P. G.; Warman, J. M.; Dehaas, M. P., Effect of accumulated radiation-Dose on pulse-radiolysis conductivity transients in a mesomorphic octa-n-alkoxy-substituted phthalocyanine. Journal of Physical Chemistry 1993, 97, (38), 9863.
19. Bredas, J. L.; Beljonne, D.; Coropceanu, V.; Cornil, J., Charge-transfer and energy-transfer processes in pi-conjugated oligomers and polymers: A molecular picture. Chemical Reviews 2004, 104, (11), 4971.
20. Bassler, H., Charge transport in disordered organic photoconductors - A monte-carlo simulation study. Physica Status Solidi B-Basic Research 1993, 175, (1), 15.
21. Borsenberger, P. M.; Magin, E. H.; Vanderauweraer, M.; Deschryver, F. C., The role of disorder on charge-transport in molecularly doped polymers and related materials. Physica Status Solidi A-Applied Research 1993, 140, (1), 9.
22. Peumans, P.; Yakimov, A.; Forrest, S. R., Small molecular weight organic thin-film photodetectors and solar cells. Journal of Applied Physics 2003, 93, (7), 3693.
23. Kersting, R.; Lemmer, U.; Deussen, M.; Bakker, H. J.; Mahrt, R. F.; Kurz, H.; Arkhipov, V. I.; Bassler, H.; Gobel, E. O., Ultrafast field-induced dissociation of excitons in conjugated polymers. Physical Review Letters 1994, 73, (10), 1440.
24. Alvarado, S. F.; Seidler, P. F.; Lidzey, D. G.; Bradley, D. D. C., Direct determination of the exciton binding energy of conjugated polymers using a scanning tunneling microscope. Physical Review Letters 1998, 81, (5), 1082.
25. Hill, I. G.; Kahn, A.; Soos, Z. G.; Pascal, R. A., Charge-separation energy in films of pi-conjugated organic molecules. Chemical Physics Letters 2000, 327, (3-4), 181.
26. Yang, X.; Loos, J., Toward high-performance polymer solar cells: The importance of morphology control. Macromolecules 2007, 40, (5), 1353.
27. Scharber, M. C.; Wuhlbacher, D.; Koppe, M.; Denk, P.; Waldauf, C.; Heeger, A. J.; Brabec, C. L., Design rules for donors in bulk-heterojunction solar cells - Towards 10 % energy-conversion efficiency. Advanced Materials 2006, 18, (6), 789.
28. Wang, G. M.; Swensen, J.; Moses, D.; Heeger, A. J., Increased mobility from regioregular poly(3-hexylthiophene) field-effect transistors. Journal of Applied Physics 2003, 93, (10), 6137.
29. Hebner, T. R.; Wu, C. C.; Marcy, D.; Lu, M. H.; Sturm, J. C., Ink-jet printing of doped polymers for organic light emitting devices. Applied Physics Letters 1998, 72, (5), 519.
30. Shaheen, S. E.; Radspinner, R.; Peyghambarian, N.; Jabbour, G. E., Fabrication of bulk heterojunction plastic solar cells by screen printing. Applied Physics Letters 2001, 79, (18), 2996.
31. Pschenitzka, F.; Sturm, J. C., Three-color organic light-emitting diodes patterned by masked dye diffusion. Applied Physics Letters 1999, 74, (13), 1913.
32. Rogers, J. A.; Bao, Z. N.; Raju, V. R., Nonphotolithographic fabrication of organic transistors with micron feature sizes. Applied Physics Letters 1998, 72, (21), 2716.
33. Zhou, Q. M.; Hou, Q.; Zheng, L. P.; Deng, X. Y.; Yu, G.; Cao, Y., Fluorene-based low band-gap copolymers for high performance photovoltaic devices. Applied Physics Letters 2004, 84, (10), 1653.
34. Shaheen, S. E.; Vangeneugden, D.; Kiebooms, R.; Vanderzande, D.; Fromherz, T.; Padinger, F.; Brabec, C. J.; Sariciftci, N. S., Low band-gap polymeric photovoltaic devices. Synthetic Metals 2001, 121, (1-3), 1583.
35. Shrotriya, V.; Li, G.; Yao, Y.; Moriarty, T.; Emery, K.; Yang, Y., Accurate measurement and characterization of organic solar cells. Advanced Functional Materials 2006, 16, (15), 2016.
36. Shaheen, S. E.; Ginley, D. S.; Jabbour, G. E., Organic-based photovoltaics. toward low-cost power generation. MRS Bulletin 2005, 30, (1), 10.
37. Ko, C. J.; Lin, Y. K.; Chen, F. C.; Chu, C. W., Modified buffer layers for polymer photovoltaic devices. Applied Physics Letters 2007, 90, (6), 063509.
38. Reyes-Reyes, M.; Kim, K.; Carroll, D. L., High-efficiency photovoltaic devices based on annealed poly(3-hexylthiophene) and 1-(3-methoxycarbonyl)-propyl-1- phenyl-(6,6)C-61 blends. Applied Physics Letters 2005, 87, (8), 083506.
39. Ma, W. L.; Yang, C. Y.; Gong, X.; Lee, K.; Heeger, A. J., Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Advanced Functional Materials 2005, 15, (10), 1617.
40. Li, G.; Shrotriya, V.; Huang, J. S.; Yao, Y.; Moriarty, T.; Emery, K.; Yang, Y., High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nature Materials 2005, 4, (11), 864.
41. Kim, K.; Liu, J.; Namboothiry, M. A. G.; Carroll, D. L., Roles of donor and acceptor nanodomains in 6% efficient thermally annealed polymer photovoltaics. Applied Physics Letters 2007, 90, (16), 163511.
42. Kim, J. Y.; Lee, K.; Coates, N. E.; Moses, D.; Nguyen, T. Q.; Dante, M.; Heeger, A. J., Efficient tandem polymer solar cells fabricated by all-solution processing. Science 2007, 317, (5835), 222.
43. Shaheen, S. E.; Brabec, C. J.; Sariciftci, N. S.; Padinger, F.; Fromherz, T.; Hummelen, J. C., 2.5% efficient organic plastic solar cells. Applied Physics Letters 2001, 78, (6), 841.
44. Padinger, F.; Rittberger, R. S.; Sariciftci, N. S., Effects of postproduction treatment on plastic solar cells. Advanced Functional Materials 2003, 13, (1), 85.
45. Shrotriya, V.; Yao, Y.; Li, G.; Yang, Y., Effect of self-organization in polymer/fullerene bulk heterojunctions on solar cell performance. Applied Physics Letters 2006, 89, (6), 063505.
46. Zhao, Y.; Xie, Z. Y.; Qu, Y.; Geng, Y. H.; Wang, L. X., Solvent-vapor treatment induced performance enhancement of poly(3-hexylthiophene): methanofullerene bulk-heterojunction photovoltaic cells. Applied Physics Letters 2007, 90, (4),10258.
47. Hoppe, H.; Sariciftci, N. S., Morphology of polymer/fullerene bulk heterojunction solar cells. Journal of Materials Chemistry 2006, 16, (1), 45.
48. Yang, X. N.; Loos, J.; Veenstra, S. C.; Verhees, W. J. H.; Wienk, M. M.; Kroon, J. M.; Michels, M. A. J.; Janssen, R. A. J., Nanoscale morphology of high-performance polymer solar cells. Nano Letters 2005, 5, (4), 579.
49. Li, G.; Yao, Y.; Yang, H.; Shrotriya, V.; Yang, G.; Yang, Y., "Solvent annealing" effect in polymer solar cells based on poly(3-hexylthiophene) and methanofullerenes. Advanced Functional Materials 2007, 17, (10), 1636.
50. Swinnen, A.; Haeldermans, I.; vande Ven, M.; D'Haen, J.; Vanhoyland, G.; Aresu, S.; D'Olieslaeger, M.; Manca, J., Tuning the dimensions of C-60-based needlelike crystals in blended thin films. Advanced Functional Materials 2006, 16, (6), 760.
51. De hoog, E. H. A.; Kegel, W. K.; van Blaaderen, A.; Lekkerkerker, H. N. W., Direct observation of crystallization and aggregation in a phase-separating colloid-polymer suspension. Physical Review E 2001, 6402, (2), 021407.
52. Kumacheva, E.; Li, L.; Winnik, M. A.; Shinozaki, D. M.; Cheng, P. C., Direct imaging of surface and bulk structures in solvent cast polymer blend films. Langmuir 1997, 13, (9), 2483.
53. Norrman, K.; Larsen, N. B.; Krebs, F. C., Lifetimes of organic photovoltaics: Combining chemical and physical characterisation techniques to study degradation mechanisms. Solar Energy Materials and Solar Cells 2006, 90, (17), 2793.
54. Chirvase, D.; Parisi, J.; Hummelen, J. C.; Dyakonov, V., Influence of nanomorphology on the photovoltaic action of polymer-fullerene composites. Nanotechnology 2004, 15, (9), 1317.
55. Huang, J. S.; Li, G.; Yang, Y., Influence of composition and heat-treatment on the charge transport properties of poly(3-hexylthiophene) and [6,6]-phenyl C-61-butyric acid methyl ester blends. Applied Physics Letters 2005, 87, (11), 112105.
56. Roncali, J., Synthetic principles for bandgap control in linear pi-conjugated systems. Chemical Reviews 1997, 97, (1), 173.
57. Inganas, O.; Salaneck, W. R.; Osterholm, J. E.; Laakso, J., Thermochromic and aolvatochromic effects in poly(3-hexylthiophene). Synthetic Metals 1988, 22, (4), 395.
58. Hotta, S.; Rughooputh, S.; Heeger, A. J., Conducting polymer composites of soluble polythiophenes in polystyrene. Synthetic Metals 1987, 22, (1), 79.
59. Erb, T.; Zhokhavets, U.; Gobsch, G.; Raleva, S.; Stuhn, B.; Schilinsky, P.; Waldauf, C.; Brabec, C. J., Correlation between structural and optical properties of composite polymer/fullerene films for organic solar cells. Advanced Functional Materials 2005, 15, (7), 1193.
60. Monestier, F.; Simon, J. J.; Torchio, P.; Escoubas, L.; Florya, F.; Bailly, S.; de Bettignies, R.; Guillerez, S.; Defranoux, C., Modeling the short-circuit current density of polymer solar cells based on P3HT: PCBM blend. Solar Energy Materials and Solar Cells 2007, 91, (5), 405.
61. Brabec, C. J.; Sariciftci, N. S.; Hummelen, J. C., Plastic solar cells. Advanced Functional Materials 2001, 11, (1), 15.
62. Lin, I. N.; Lee, W. C.; Liu, K. S.; Cheng, H. F.; Wu, M. W., On the microwave sintering technology for improving the properties of semiconducting electronic ceramics. Journal of the European Ceramic Society 2001, 21, (10-11), 2085.
63. Reyes-Reyes, M.; Kim, K.; Carroll, D. L., High-efficiency photovoltaic devices based on annealed poly(3-hexylthiophene) and 1-(3-methoxycarbonyl)- propyl-1- phenyl- (6,6) C-61 blends. Applied Physics Letters 2005, 87, (8).083506.
64. Li, G.; Shrotriya, V.; Yao, Y.; Yang, Y., Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene). Journal of Applied Physics 2005, 98, (4) 043704.
65. Haque, K. E., Microwave energy for mineral treatment processes - a brief review. International Journal of Mineral Processing 1999, 57, (1), 1.
66. Rao, K. J.; Vaidhyanathan, B.; Ganguli, M.; Ramakrishnan, P. A., Synthesis of inorganic solids using microwaves. Chemistry of Materials 1999, 11, (4), 882.
67. Ahn, J. H.; Lee, J. N.; Kim, Y. C.; Ahn, B. T., Microwave-induced low-temperature crystallization of amorphous Si thin films. Current Applied Physics 2002, 2, (2), 135.
68. Olmedo, L.; Hourquebie, P.; Jousse, F., Microwave absorbing materials based on conducting polymers. Advanced Materials 1993, 5, (5), 373.
69. Olmedo, L.; Hourquebie, P.; Jousse, F., Microwave properties of conductive polymers. Synthetic Metals 1995, 69, (1-3), 205.
70. Ko, F. H.; Weng, L. Y.; Ko, C. J.; Chu, T. C., Characterization of imprinting polymeric temperature variation with fluorescent rhodamine B molecule. Microelectronic Engineering 2006, 83, (4-9), 864.
71. Thostenson, E. T.; Chou, T. W., Microwave processing: fundamentals and applications. Composites Part A-Applied Science and Manufacturing 1999, 30, (9), 1055.
72. Dittmer, J. J.; Marseglia, E. A.; Friend, R. H., Electron trapping in dye/polymer blend photovoltaic cells. Advanced Materials 2000, 12, (17), 1270.
73. Brown, T. M.; Kim, J. S.; Friend, R. H.; Cacialli, F.; Daik, R.; Feast, W. J., Built-in field electroabsorption spectroscopy of polymer light-emitting diodes incorporating a doped poly(3,4-ethylene dioxythiophene) hole injection layer. Applied Physics Letters 1999, 75, (12), 1679.
74. Yu, G.; Zhang, C.; Heeger, A. J., Dual-function semiconducting polymer devices - light-emitting and photodetecting diodes. Applied Physics Letters 1994, 64, (12), 1540.
75. Aernouts, T.; Geens, W.; Poortmans, J.; Heremans, P.; Borghs, S.; Mertens, R., Extraction of bulk and contact components of the series resistance in organic bulk donor-acceptor-heterojunctions. Thin Solid Films 2002, 403, (2), 297.
76. Zhang, F. L.; Johansson, M.; Andersson, M. R.; Hummelen, J. C.; Inganas, O., Polymer photovoltaic cells with conducting polymer anodes. Advanced Materials 2002, 14, (9), 662.
77. Zhang, F. L.; Gadisa, A.; Inganas, O.; Svensson, M.; Andersson, M. R., Influence of buffer layers on the performance of polymer solar cells. Applied Physics Letters 2004, 84, (19), 3906.
78. Dennler, G.; Lungenschmied, C.; Neugebauer, H.; Sariciftci, N. S.; Labouret, A., Flexible, conjugated polymer-fullerene-based bulk-heterojunction solar cells: Basics, encapsulation, and integration. Journal of Materials Research 2005, 20, (12), 3224.
79. Mazhari, B., An improved solar cell circuit model for organic solar cells. Solar Energy Materials and Solar Cells 2006, 90, (7-8), 1021.
80. Waldauf, C.; Scharber, M. C.; Schilinsky, P.; Hauch, J. A.; Brabec, C. J., Physics of organic bulk heterojunction devices for photovoltaic applications. Journal of Applied Physics 2006, 99, (10), 104503.
81. Wierzchos, J,; Ascaso, C., Mineralogical transformation of bioweathered granitic biotite, studied by HRTEM: Evidence for a new pathway in lichen activity. Clays and Clay Miners 1998, 46, (4), 446.
82. http://www.webelements.com/webelements/properties/text/definitions/
coeff-thermal-expansion.html
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔