跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/13 20:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:何介暐
論文名稱:非極性氮化銦薄膜之兆赫波輻射研究
論文名稱(外文):Terahertz Emission Properties of
指導教授:潘犀靈安惠榮
學位類別:碩士
校院名稱:國立交通大學
系所名稱:光電工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:62
中文關鍵詞:兆赫波非極性氮化銦表面輻射薄膜
外文關鍵詞:terahertznonpolarInNsurface emissionfilm
相關次數:
  • 被引用被引用:0
  • 點閱點閱:235
  • 評分評分:
  • 下載下載:26
  • 收藏至我的研究室書目清單書目收藏:0
在這篇論文中,我們研究有關c軸平面氮化銦薄膜與a軸平面氮化銦薄膜之光激發產生兆赫波輻射研究。我們的團隊曾報導過源自於奈米柱狀結構的兆赫波輻射強度增強現象,相較於c軸平面氮化銦薄膜所展生者在兆赫波輻射電場上大上十倍,並且我們認為這兩種結構的氮化銦薄膜都是以photo-Dember effect作為輻射兆赫波的主要機制。對於沿著a軸 成長的平面而言,極化導致的電場平行於表面介面,我們並且發現其兆赫波放射能量上遠遠比c軸平面氮化銦薄膜大上兩個級數,且與目前所知最好的兆赫波放射源:砷化銦擁有相同級數的輻射強度。我們認為a軸平面氮化銦薄膜主要的兆赫波輻射機制是來自於受激發載子在極化感應電場下有著較為有效率輻射出半導體介面的幾何耦合輻射效應。

在高能量雷射的激發之下,放射出的兆赫波顯示出與方位角有關的分量疊加於與方位角無關的分量上。與激發光線的線性偏振和方位角有關的兆赫波輻射特性可能是來自於兆赫波的非線性輻射,例如光整流效應,此與a軸平面氮化銦薄膜的電納系數有著密切關係。
In this thesis, we report the terahertz emission measurement from c-plane and a-plane indium nitride (InN) films. Our group already has reported the enhancement of terahertz (THz) radiation (greater than ten times in intensity) from InN nanorod arrays compared to the InN films grown along the c-axis and the dominant emission mechanism was proposed to be the photo-Dember effect. For the layers grown along a-( ), polarization-induced electric field is parallel to the layer interface and THz emission from it is found to be at least two orders of magnitude stronger than that from c-plane InN film, which is the same order of InAs, the best semiconductor THz emitter so far. We propose that the primary radiation mechanism of the a-plane InN film is due to the acceleration of photoexcited carriers under the polarization-induced in-plane electric field perpendicular to the a-axis, which effectively enhances the geometrical coupling of the radiation out of semiconductor.
At high photoexcitation, emitted THz wave shows the obvious azimuthal angle dependence superimposed with a strong angle-independent component. Pump polarization and azimuthal angle dependence of emitted THz wave may be due to the nonlinear THz emission mechanism, such as optical rectification, which is depending on the characteristic susceptibility tensor of a-plane InN.
Abstract(C)...............................................i
Abstract(E) .............................................ii
Acknowledgement.........................................iii
Contents.................................................iv
List of Figures..........................................vi
List of Tables............................................x
Chapter 1 Introduction ...................................1
1-1 Terahertz Radiation...................................1
1-2 III-Nitride Compound Semiconductors : InN.............5
1-3 Organization of Thesis................................7
Chapter 2 Experimental Theories ..........................8
2-1 Terahertz Generation..................................8
2-1-1 Surge-Current Model.................................8
2-1-2 Surface Depletion Field............................10
2-1-3 Photo-Dember Effect................................12
2-1-4 Optical Rectification..............................16
2-1-5 THz Enhancement by External Magnetic Field ........19
2-2 Terahertz Detection : Electro-Optical Crystal and Free Space Electro-Optic Sampling (FS-EOS)................... 21
Chapter 3 Experimental Setups ...........................25
3-1 Introduction of Femtosecond Laser System.............25
3-2 Electro-Optic THz System.............................27
Chapter 4 Sample Properties..............................31
4-1 InN Film (c-plane InN)...............................33
4-2 Nonpolar InN Film (a-plane InN)......................34
Chapter 5 Experimental Results and Discussion............37
5-1 Terahertz Emission from InN Surface .................37
5-2 Azimuthal Angle dependence of InN....................45
5-3 Pump Polarization Dependence of Semiconductors.......51
Chapter 6 Conclusion and Future Work.....................55
6-1 Conclusion ..........................................55
6-2 Future Work..........................................56
[ 1]
Mourou G, Stancampiano C V, Antonetti A and Orszag A, “Picosecond microwave pulse generation,” Appl. Phys. Lett., 38, no. 6, pp. 470-472, 1981.
[ 2]
Auston D H, Cheung K P and Smith P R, “Picosecond photoconducting Hertzian dipoles,” Appl. Phys. Lett., 45, no. 3, pp. 284-286, 1984.
[ 3]
Ch. Fattinger, and D. Grischkowsky, “Point source terahertz optics,” Appl. Phys. Lett., 53, pp. 1480-1482, 1988.
[ 4]
N. Sarukura, H. Othtake, S. Izumida, and Z. Liu, “High average-power THz radiation from femtosecond laser-irradiated InAs in a magnetic field and its elliptical polarization characteristics,” J. Appl. Phys., 84, pp. 654-656, 1998.
[ 5]
X.-C. Zhang, Perspectives in Optoelectronics, Ed. By Sudhanshu S. Jha, Would Scientific, chapter 3, 1995.
[ 6]
Q. Wu and X. C. Zhang, “Ultrafast electro-optic field sensors,” Appl. Phys. Lett., 68, no. 12, pp. 1604-1606, 1996.
[ 7]
A. G. Markelz, A. Roitberg, and E. J. Heilweil, “Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0 THz,” Chem. Phys. Lett. 320, pp. 42–48, 2000.
[ 8]
B.B. Hu and M. C. Nuss, “Imaging with terahertz waves,” Opt. Lett., 20, pp. 1716–1718, 1995
[ 9]
D. Grischkowsky, S. Keiding, M. van Exter, and Ch. Fattiger, “Far-infrared Time-domain Spectroscopy with Terahertz Beams of Dielectrics and Semiconductors,” J. Opt. Soc. Am. B, 7, No. 10, pp. 2006-2015, 1990.
[ 10]
M. van Exter and D. Grischkowsky, “Optical and Electronic Properties of Doped Silicon From 0.1 to 2 THz,” Appl. Phys. Lett., 56, no. 17, pp. 1694-1696 1990.
[ 11]
Matthew C. Beard, Gordon M. Turner, James E. Murphy, Olga I. Micic, Mark C. Hanna, Arthur J. Nozik, and Charles A. Schmuttenmaer, ” Electronic Coupling in InP Nanoparticle Arrays” Nano Lett., 3, pp. 1695-1699
[ 12]
Jason B. Baxter and Charles A. Schmuttenmaer, “Conductivity of ZnO Nanowires, Nanoparticles, and Thin Films Using Time-Resolved Terahertz Spectroscopy,” J. Phys. Chem. B, 110, pp.25229-25239, 2006
[ 13]
D. G. Cooke, A. N. MacDonald,1 A. Hryciw, J. Wang,Q. Li, A. Meldrum, and F. A. Hegmann, “Transient terahertz conductivity in photoexcited silicon nanocrystal films,” Phys. Rev. B, 73, pp. 193311-1-193311-4, 2006
[ 14]
R. Acsazubi, I. Wilke, K. Denniston, H. L. Lu, and W. J. Schaff, “Terahertz emission by InN,“ Appl. Phys. Lett., 84, pp. 4810-4812, 2004.
[ 15]
G. D. Chern, E. D. Readinger, H. Shen, M. Wraback, C. S. Gallinat, G. Koblmuller, and J. S. Speck, “Excitation wavelength dependence of terahertz emission from InN and InAs,” Appl. Phys. Lett., 89, pp.141115, 2006.
[ 16]
B. Pradarutti, G. Matthaus, C. Bruckner, S. Riehemann, G. Notni, S. Nolti, V.Cimalla, V. Lebedev, O. Ambacher, and A. Tunnermann, “ InN as THz Emitterexcited at 1060 nm and 800 nm,” Proc. of SPIE, 6194, pp.619401, 2006.
[ 17]
P.K. Benicewicz, J.P. Roberts, and A.J. Taylor, “Scaling of terahertz radiation from large-aperture boased photoconductors,” J. OPT. Soc. Am. B, 11, pp.2533-2545, 1994.
[ 18]
X.-C. Zhang and D.H.Auston, “Optoelectronic measurement of semiconductor surface and interface with femtosecond optics,” J. Appl. Phys., 71, pp.326-338, 1991
[ 19]
W. Monch, “Semiconductor Surface and Interface,” Springer, Berlin, Heidelberg
pp. 68, 1993
[ 20]
V. M. Polyakov and F. Schwierz, “Low-field electron mobility in wurtzite InN”, Appl. Phys. Lett. 88, 032101, 2006
[ 21]
M Levinshtein, S Rumyantsev (Ioffe Institute) & M Shur, “Handbook Series on Semiconductor Parameters Vol. 1”, World Scientific Publishing Company, 1996
[ 22]
S. Chuang, S. Schmitt-Rink, B. Greene, P. Saeta, A. Levi, ” Optical rectification at semiconductor surfaces”, Phys. Rev. Lett. 68, 102, 1995
[ 23]
A. Bonvalet, M. Joffre, J. Martin, A. Migus, ” Generation of ultrabroadband femtosecond pulses in the mid-infrared by optical rectification of 15 fs light pulses at 100 MHz repetition rate”, Appl. Phys. Lett. 67, 2907,1995
[ 24]
A. Rice, Y. Jin, X.Ma, X.-C. Zhang, D. Bliss, J. Larkin, M. Alexander, “Terahertz optical rectification from <110> zinc-blende crystals”, Appl. Phys. Lett. 64, 1324, 1994
[ 25]
P. Gu, M. Tani, S. Kono, K. Sakai, ” Study of terahertz radiation from InAs and InSb”, J. Appl. Phys. 91, 5533 , 2002
[ 26]
D. Mittleman, “Sensing with Terahertz Radiation,” Springer, Berlin, Heidelberg pp.155, 2002
[ 27]
H. Ahn, Y.-P. Ku, Y.-C. Wang, C.-H. Chuang, “Terahertz emission from vertically aligned InN nanorod arrays”, Appl. Phys. Lett. 91, 132108 , 2007
[ 28]
X. C. Zhang, Y. Liu, T. D. Hewitt, T. Sangsiri, L. E. Kingsley, and M.Weiner, “Magnetic switching of THz beams” Appl. Phys. Lett. 62, 2003 (1993).
[ 29]
S. C. Howells, S. D. Herrera, and L. A. Schlie, “” Infrared wavelength and temperature dependence of optically induced terahertz radiation from InSb”, Appl. Phys. Lett. 65, 2946(1994).)


[ 30]
M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, “Simulation of terahertz generation at semiconductor surfaces”, Phys. Rev. B , 65, 165301 , 2002
[ 31]
Elmer Estacio, Hisashi Sumikura, Hidetoshi Murakami, Masahiko Tani, Nobuhiko Sarukura, and Masanori Hangyo, Carlito Ponseca, Jr., Romeric Pobre, and Reuben Quiroga, Shingo Ono, ”Magnetic-field-induced fourfold azimuthal angle dependence in the terahertz radiation power of (100) InAs”, Appl. Phys. Lett., 90, 151915 , 2007
[ 32]
B. Pradarutti, G. Matthäus, C. Brückner, S. Riehemann, G. Notni, S. Nolti,V. Cimalla, V. Lebedev, O. Ambacher, and A. Tünnermann, ” InN as THz emitter excited at 1060 and 800 nm”, Proc. SPIE 6194, 619401, 2006.
[ 33]
Xiaodong Mu, Yujie J. Ding,, Kejia Wang, Debdeep Jena, and Yuliya B. Zotova, ”Resonant terahertz generation from InN thin films”, OPTICS LETTERS 32, No. 11, June 1, 2007
[ 34]
M. Reid and R. Fedosejevs, “Terahertz emission from (100) InAs surfaces at high excitation fluences”, Appl. Phys. Lett., 86, 011906 2005
[ 35]
Xiaodong Mu, Yujie J. Ding, Kejia Wang, Debdeep Jena, and Yuliya B. Zotova
, ” Resonant terahertz generation from InN thin films”, Optics Letters, Vol.32 No.11, 2007
[ 36]
V. Yu. Davydov, A. A. Klochikhin, R. P. Seisyan, V. V. Emtsev, S. V.Ivanov, F. Bechstedt, J. Furthmu¨ller, H. Harima, A. V. Mudryi, J. Aderhold, O. Semchinova, and J. Graul, ”Absorption and Emission of Hexagonal InN. Evidence of Narrow Fundamental Band Gap”, Phys. Status Solidi B ,229, R1 (2002)
[ 37]
V. Yu. Davydov, A. A. Klochikhin, V. V. Emtsev, D. A. Kurdyukov, S. V.Ivanov, V. A. Vekshin, F. Bechstedt, J. Furthmu¨ller, J. Aderhold, J. Graul,A. V. Mudryi, H. Harima, A. Hashimoto, A. Yamamoto, and E. E. Haller, ” Band Gap of Hexagonal InN and InGaN Alloys ”, Phys. Status Solidi B, 234, 787 (2002)
[ 38]
J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager II, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, and Y. Nanishi, “Unusual properties of the fundamental band gap of InN”Appl. Phys. Lett. 80, 3967 (2002)
[ 39]
J. Wu, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager III, S. X. Li, E. E. Haller, H. Lu, and W. J. Schaff, J.” Temperature dependence of the fundamental band gap of InN” Appl. Phys. 94, 4457 (2003)
[ 40]
K. Xu and A. Yoshikawa, “Effects of film polarities on InN growth by molecular-beam epitaxy” Appl. Phys. Lett. 83, 251 (2003)
[ 41]
T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, and E. Kurimoto, “Optical bandgap energy of wurtzite InN ”, Appl. Phys. Lett. 81, 1246 (2002).
[ 42]
Hai Lu, William J. Schaff, and Lester F. Eastman, “Growth of a-plane InN on r-plane sapphire with a GaN buffer by molecular-beam epitaxy”, Appl. Phys. Lett. 83, 1136 (2003)
[ 43]
J. E. Sipe, D.J. Moss, and H. M. van Driel, “Phenomenological theory of optical second- and third-harmonic generation from cubic centrosymmetric crystals ”, Phys. Rev. B, 35, 1129, (1987)
[ 44]
C. Weiss, R. Wallenstein, and R. Beigang, ”Magnetic-field-enhanced generation of terahertz radiation in semiconductor surfaces”, Appl. Phys. Lett.77, 4160 (2000).
[ 45]
N. Sarukura, H. Ohtake, S. Izumida, and Z. Liu, “High average-power THz radiation from femtosecond laser-irradiated InAs in a magnetic field and its elliptical polarization characteristics”, J. Appl. Phys. 84, 654 (1998)
[ 46]
R. McLaughlin, A. Corchia, M. B. Johnston, Q. Chen, C. M.Ciesla, D. D. Arnone, G. A. C. Jones, E. H. Linfield, A. G.Davies, and M. Pepper, “Enhanced coherent terahertz emission from indium arsenide in the presence of a magnetic field”, Appl. Phys. Lett. 76, 2038 (2000)
[ 47]
D. Segev and C. G. van de Walle, “Electronic structure of nitride surfaces”, J. Crystal Growth 300, 199 (2007)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊