(44.192.112.123) 您好!臺灣時間:2021/03/06 07:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王炯鑫
研究生(外文):Chon-Hsin Wang
論文名稱:以電鍍法製備高頻覆晶封裝用錫-銅凸塊之研究
論文名稱(外文):Preparation of Sn-Cu Bump for High-frequency Flip-chip Bonding Utilizing Electroplating Process
指導教授:謝宗雍
指導教授(外文):Tsung-Eong Hsieh
學位類別:碩士
校院名稱:國立交通大學
系所名稱:材料科學與工程系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:96
語文別:中文
論文頁數:63
中文關鍵詞:高頻覆晶封裝錫銅凸塊電鍍
外文關鍵詞:High-frequencyFlip-chip BondingSn-Cu BumpElectroplating
相關次數:
  • 被引用被引用:8
  • 點閱點閱:870
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:221
  • 收藏至我的研究室書目清單書目收藏:0
本研究藉由不同條件的電鍍製程製備符合高頻砷化鎵(GaAs)元件覆晶封裝用高50 um、直徑50 um的錫-銅接合凸塊,電鍍實驗條件概分為定電流、定電壓和脈衝電壓,完成之凸塊並以掃描式電子顯微鏡(Scanning Electron Microscopy,SEM)與觀察其內部微觀結構及以推力測試分析凸塊接合強度。定電流實驗之結果顯示以電流密度0.5ASD∼1ASD範圍執行電鍍,不論是否有加入添加劑PEG200,皆可獲得緻密性良好的凸塊;在定電壓實驗中,加入添加劑PEG200確實可以改善凸塊內部的緻密性,這是因為電流值會上升使鍍率升快,增加孔洞的生成,而PEG200能抑制抑制還原反應、減緩沉積速率;另外發現脈衝電壓法因鍍率太慢,不適合用來製備深孔電鍍。能量分散譜儀(Energy Dispersive Spectroscopy,EDS)對凸塊內部的成分分佈顯示,不論是定電流析鍍或定電壓析鍍,使用添加PEG200之鍍液所得之凸塊內部的銅含量均減少。凸塊的推力測試(Shear test)顯示凸塊與基板之剪力強度約在40 Nt/mm2,大致符合符合業界推力測試標準。
摘要..............................................i
ABSTRACT..........................................ii
誌謝..............................................iii
目錄..............................................iv
圖目錄............................................vi
表目錄............................................viii
符號表............................................ix
第一章 緒論........................................1
第二章 文獻回顧....................................2
2.1、電子封裝技術的演進............................2
2.2、覆晶封裝......................................5
2.3、凸塊的發展....................................6
2.3.1、凸塊製備技術................................6
2.3.2、適用於高頻元件之凸塊........................10
2.4、電鍍..........................................11
2.4.1、電鍍的基本原理..............................11
2.4.2、合金電鍍(Alloying Plating)[28]............14
2.4.3、直流與交流電鍍..............................15
2.4.4、添加劑......................................16
2.5、無鉛銲錫的發展................................17
2.6、研究動機......................................19
第三章 實驗方法....................................20
3.1、實驗流程......................................20
3.1.1、基板前處理..................................21
3.1.2、UBM製作.....................................21
3.1.3、厚膜微影製程(Thick-film Lithography)......21
3.1.4、電鍍........................................22
3.2、循環伏安法(Cyclic Voltammetry,CV)[48].......25
3.3、SEM分析.......................................27
3.4、成份分析......................................28
3.5、推力測試......................................29
第四章 結果與討論..................................31
4.1、鍍液的循環伏安分析............................31
4.2、電鍍條件對凸塊形貌之影響......................33
4.2.1、定電流電鍍..................................33
4.2.2、定電壓電鍍..................................39
4.2.3、脈衝電壓電鍍................................43
4.3、EDS分析.......................................46
4.4、推力測試......................................50
第五章 結論........................................55
第六章 未來研究與展望..............................58
參考文獻...........................................59
[1] Rao R. Tummala, “Fundamentals of Microsystems Packaging”, McGraw-Hill, New York, (2001).
[2] 隋安莉、洪永參,“2001年奈米技術與分子電子學的重大發現”,科學發展,353(2002),p.42-47.
[3] 謝宗雍,“微電子材料與製程”,第十章,電子構裝技術,(2000), p.385-467.
[4] Masayasu Ishiko, Masanori Usui, Takashi Ohuchi, and Mikio Shirai, “Design concept for wire-bonding reliability improvement by optimizing position in power devices”, Microelectronics Journal, 37(2006), p.262.
[5] J.H. Lau, S. J. Erasmus and D.W. Rice, “Overview of tape automated bonding technology”, Microelectronics Reliability, 30(1990), p.1013.
[6] J.H. Lau, “Ball Grid Array Technology”, McGraw-Hill, New York, (1995).
[7] Andrea Jentzsch and Wolfgang Heinrich, “Theory and Measurements of Flip-Chip Interconnects for Frequencies up to 100 GHz”, IEEE Transactions on Microwave Theory and Techniques, 49(2001), p.871.
[8] S. Gao and A.S. Holmes, “Thermosonic Flip Chip Interconnection Using Electroplated Copper Column Arrays”, IEEE Transactions on Advanced Packaging, 29(2006), p.725.
[9] John H Lau, “Flip Chip Technologies”, McGraw-Hill, New York, (1996).
[10] Hirofumi Kuribara, Hiroyuki Hashimoto, Takafumi Fukushima, and Mitsumasa Koyanagi, “Multichip Shared Memory Module with Optical Interconnection for Parallel-Processor System”, Jpn. J. Appl. Phys., 45(2006), p.3504.
[11] N.T. Nguyen, E. Boellaard, N.P. Pham, V.G. Kutchoukov, G.Craciun, and P. M. Sarro, “Through-wafer copper electroplating for three-dimensional interconnects”, Institute Of Physics Publishing J. Micromech. Microeng., 12 (2002), p.395.
[12] Han Seo Cho, Kun-Mo Chu, Saekyoung Kang, Sung Hwan Hwang, Byung Sup Rho, Weon Hyo Kim, Joon-Sung Kim, Jang-Joo Kim, and Hyo-Hoon Park, “Compact Packaging of Optical and Electronic Components for On-Board Optical Interconnects”, IEEE Transactions on Advanced Packaging, 28(2005), p.114.
[13] L.T. Manzione, “Plastic Packaging of Microelectronic Devices”, Van Nostrand Renhold, New York, (1990).
[14] 鍾文仁、陳佑任編著,“IC封裝製程與CAE應用”,(2005)。
[15] E.M. Davis, W.E. Harding, R.S. Schwartz, and J.J. Corning, IBM J. Res. Develop., (1964), p.102.
[16] 楊省樞,“覆晶技術”,工業材料,127(1997),p.90-96.
[17] Darrel R. Frear, “Materials Issues in Area-Array Microelectronic Packaging”, JOM, 51(1999), p.22.
[18] Satoh, R., K. Arakawa, M. Harada, and E. Matsui, ‘‘Thermal Fatigue Life of Pb-Sn Alloy Interconnections”, IEEE Transactions on Components, Hybrids and Manufacturing Technology, 14(1991), p.224.
[19] X. Liu, S Xu, G.Q. Lu, and D.A. Dillard, “Stacked solder bumping technology for improved solder joint reliability”, Microelectronics Reliability, 41(2001), p.1979.
[20] E.B. Liao, Andrew, A.O. Tay, Simon, S.T. Ang,, H.H. Feng, R. Nagarajan, and V. Kripesh, “Fatigue and Bridging Study of High-Aspect-Ratio Multicopper-Column Flip-Chip Interconnects Through Solder Joint Shape Modeling”, IEEE Transactions on Components and Packaging Technologies, 29(2006), p.560.
[21] 王致誠、曾志遠,“金凸塊電鍍製程與設備技術探討”,機械工業雜誌,258(2004), p.173.
[22] R. Sturdivant, “Reducing the effects of the mounting substrate on the performance of GaAs MMIC flip-chips”, IEEE MIT-S Symp., Orlando, FL, 3(1995), p.1591.
[23] 柯志廷,“乾膜光阻應用在高頻覆晶凸塊製程之研究”,交大材料所碩士論文,(1994)。
[24] Katarina Boustedt, “GHz Flip Chip- An Overview”, Electronic Components and Technology Conference, Seattle, WA, (1998), p.1280.
[25] T.M. Laher, L.E. McCurry, and G. Mamantov, Anal. Chem., 57(1985), p.500.
[26] W. Nernst, Z. Physik. Chem., 4 (1889), p.129.
[27] David V. Ragone, “Thermodynamics of Materials”, John Wiley & Sons, New York, (1995), p.169.
[28] 蘇魁陽、張良謙,“實用電鍍理論”,(1994),p.96-111.
[29] Mordechay Schlesinger and Milan Paunovic, “Modern Electroplating”, 4th edition, John Wiley & Sons, New York, (2000), p.2-56.
[30] M.R. Kalantary and D.R. Gabe, “Physical properties of pulsed current copper electrodeposits”, J. Mater. Sci., 30(1995), p.4515.
[31] J.Cl. Puippe and F. Leaman, eds., “Theory and Practice of Pulse Plating”, American Electroplaters and Surface Finishers Soci. (1986).
[32] 崔秉鉞,“製程整合講義”,(2006)。
[33] P.C. Andricacos, C. Uzoh, J. O. Dukovic, J. Horkans, and H. Deligianni, “Damascene copper electroplating for chip interconnections”, IBM J. Res. Develop., 42(1998), p.383.
[34] H.G. Creutz, R. M. Stevenson, and E.A. Romanowski, “Electrodeposition of Copper from Acidic Bath”, U.S. Pat. 3,267,010 (1966); 3,288,690 (1966).
[35] D.M. Hembree, Jr., “Linear Sweep Voltammetry to Determine Lignin Sulfonate in Lead Baths”, Plating & Surface Finishing, 73(1986), p.54.
[36] S. Meibuhr et al, “Extended Abstracts Electrodeposition Division”, The Electrochem. Soc., National Meeting, Detroit, (1961).
[37] D. Stoychev, C. Tsvetanov, “Behavior of poly(ethylene glycol) during electrodeposition of bright copper coatings in the sulfuric acid electrolytes”, J. Appl. Electrochem .Soci., 26(1996), p.741.
[38] L. Bonou, M. Eyraud, R. Denoyel, and Y. Massiani, “Influence of additives on Cu electrodeposition mechanisms in acid solution: direct current study supported by non-electrochemical measurements”, Electrochem. Acta., 47(2002), p.4139.
[39] M. Yokoi, S. Konishi, and T. Hayashi, “Adsorption behavior of polyoxyenthyleneglycol on the copper surface in an acid copper sulphate bath”, Denki Kagaku, 52(1984), p.218.
[40] J.P. Healy and D. Pletcher, “The chemistry of the additives in an acid copper electroplating bath Part Ⅰ. Polyethylene glycol and chloride ion”, J. Electroanal. Chem., 338(1992), p.155.
[41] K. Zeng and K.N. Tu, “Six cases of reliability study od Pb-free joints in electronics packaging technology”, Materials Science and Engineering, 38(2002), p.55.
[42] J. Cannis, “Green IC packaging”, Adv. Packag., 8(2001), p.33-38.
[43] Thomss Siewert, Stephen Liu, David R. Smith, and Juan Carlos Madeni, “Database for Solder Properties with Emphasis on New Lead-free Solders”, National Institute of Standard and Technology & Colorado School of Mines, Colorado, (2002).
[44] M. Bigas and E. Cabruja, “Characterisation of electroplated Sn/Ag solder bumps”, Microelectronics Journal, 37(2006), p.308.
[45] Seok Won Jung, Jae Pil Jung, and Y. (Norman) Zhou, “Characteristics of Sn–Cu Solder Bump Formed by Electroplating for Flip Chip”, IEEE Transactions on Electronics Packaging Manufacturing, 29(2006), p.10.
[46] Vempati Srinivasa Rao, Vaidyanathan Kripesh, Seung Wook Yoon, and Andrew A O Tay, “A thick photoresist process for advanced wafer level packaging applications using JSR THB-151N negative tone UV photoresist”, Institute of Physics Publishing J. Micromech. Microeng., 16(2006), p.1841.
[47] 葛書玲,“以PEG添加劑用於晶圓金屬化之酸性鍍銅系統之研究”,清大化學碩士論文,(2004)。
[48] 楊明桓,“室溫融鹽中電鍍銻化銦薄層之探討”,成大化學碩士論文,(2002)。
[49] Susumu Araiz, Hideki Akatsuka, and Norio Kaneko, “Sn-Ag solder bump formation for flip-chip bonding by electroplating”, J. Appl. Electrochem .Soci., 150(2003), p.730.
[50] 黃河樹,“有機添加劑對電鍍銅填充IC基板微米級盲孔之反應機制研究”,雲科大碩士論文,(2003)。
[51] Lawrence J. Durney, “Electroplating Engineering Handbook”, 4th edition, Van Nostrand Reihold, Taipei, (1985).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔