(3.239.33.139) 您好!臺灣時間:2021/02/26 23:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃淑萍
研究生(外文):Shu-Ping Huang
論文名稱:光硬化蒙脫土-環氧樹脂奈米複合物之製備研究
論文名稱(外文):Preparation and Characterizations of Photo-curable Montmorillonites-Epoxy Nanocomposites
指導教授:謝宗雍
指導教授(外文):Tsung-Eong Hsieh
學位類別:碩士
校院名稱:國立交通大學
系所名稱:材料科學與工程系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:96
語文別:中文
論文頁數:86
中文關鍵詞:奈米複合物蒙脫土環氧樹脂
外文關鍵詞:NanocompositesMontmorilloniteEpoxy
相關次數:
  • 被引用被引用:1
  • 點閱點閱:744
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:50
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究利用四級胺鹽(Quaternary Alkylammonium Salt),Hexadecyl Trimethylammonium Bromide(HDTMA)與[2-(Methacyloyloxy)ethyl] trimethylammonium Methyl Sulfate(MAOTMA),將PK802蒙脫土(Montmorillonites,MMT)改質成有機化蒙脫土,並將其摻混於環氧樹脂(Epoxy)中以製備出蒙脫土-環氧樹脂的奈米複合膠材,膠材試樣以行星式研磨(Planetary Ball Mill)進行有機化蒙脫土於樹脂基材中之分散,之後探討分散劑種類、研磨鋯珠粒徑對奈米複合物之微觀結構、熱性質、黏著性質與透光性之影響。
XRD分析顯示蒙脫土層間距由改質前的1.18 nm分別增加至1.90(經HDTMA改質)和1.39 nm(經MAOTMA改質);由ICP-MASS分析可知蒙脫土層間可交換的鈉離子幾乎完全被取代出來;XRD分析亦顯示行星式分散研磨較傳統的超音波/磁石攪拌有更好的分散效果。
改質劑MAOTMA能參與環氧樹脂的聚合反應,實驗結果得知以其進行改質的蒙脫土在奈米複合物中可達到接近完全脫層,其尺寸安定性佳,熱穩定性提升;而有機改質劑HDTMA不參與環氧樹脂的聚合反應,其製備的奈米複合物為部份插層、部分脫層,尺寸安定性雖提升但較MAOTMA之效果差。奈米複合物之形成會略為影響黏著力和透光度,但無重大之劣化。
經由鋯珠粒徑2 mm和0.5 mm研磨都能達到分散均勻的目的,然而小粒徑研磨可得到較佳之分散及尺寸安定性效果,但熱穩定性則以大粒徑研磨較佳;整體而言,以小粒徑的研磨能製備性質較佳的奈米複合物。
Two different types of quaternary alkylammonium salts, hexadecyl trimethylammonium cation (HDTMA) and [2-(methacyloyloxy)ethyl] trimethylammonium cation (MAOTMA), were adopted to modify montmorillonite (MMT) in order to prepare the epoxy/MMT nanaocomposites. Planetary ball mill was also adopted to disperse the organically modified MMT in polymer matrix. The influence of quaternary alkylammonium salt type, zirconium (Zr) beads size on the morphology, thermal stability, adhesion and transmittance of nanocomposites were investigated accordingly.
X-ray diffraction (XRD) indicated the interplanar spacing of MMT increases from 1.18 nm respectively to 1.90 nm (by HDTMA) and 1.39 nm (by MAOTMA). ICP-MASS analysis revealed the Na+ ions on MMT lamella are almost all exchanged by the modification agents. XRD analysis also indicated that the planetary ball mill provides a superior dispersion effect of modified MMTs in epoxy in comparison with conventional ultrasonic vibration/magnetic stirring method.
Since the MAOTMA may join the polymerization of epoxy, it implied a nearly exfoliated MMT structure in epoxy and consequently improved the dimension stability and thermal stability of nanocomposite samples. The HDTMA-modified MMT did not react with epoxy resin; it implied a mixture of partly intercalated, partly exfoliated MMTs in epoxy and a slightly inferior improvement on dimension stability. Formation of nanaocomposites affected the adhesion and transmittance of epoxy, nevertheless, no severe damage occurred.
Planetary ball mill using Zr beads sizes of 0.5 or 2 mm provided satisfied dispersion effect, however better improvements were obtained in dispersed structure and dimension stability via the 0.5-mm bead milling. Though a better thermal stability improvement was obtained by the 2-mm bead milling, the 0.5-mm bead milling is the choice for a better overall improvement on physical properties and microstructure of nanocomposites.
中文摘要 Ⅰ
英文摘要 Ⅱ
誌謝 Ⅳ
目錄 Ⅵ
圖目錄 Ⅷ
表目錄 Ⅹ
第一章 緒論 1
第二章 文獻回顧 4
2.1、緣起 4
2.2、蒙脫土簡介 4
2.2.1、黏土的結構與性質 4
2.2.2、蒙脫土的有機化改質 8
2.2.3、聚合物/蒙脫土奈米複合材料的製備 9
2.3、環氧樹脂 10
2.4、光硬化聚合反應 11
2.4.1、自由基聚合反應 12
2.4.2、陽離子聚合 15
2.5、近五年重要研究成果回顧 17
2.6、研究動機 20
第三章 實驗方法 24
3.1、實驗藥品 24
3.2、試片製備 26
3.2.1、有機改質劑之合成 26
3.2.2、有機改質劑之分析 26
3.2.2.1、NMR分析 26
3.2.2.2、傅立葉紅外線光譜儀分析(FTIR) 27
3.2.3、有機化蒙脫土之製備 27
3.2.4、蒙脫土-環氧樹脂奈米複合材料之製備 29
3.3、實驗分析 31
3.3.1、TGA分析 31
3.3.2、TMA分析 31
3.3.3、XRD分析 31
3.3.4、TEM分析 32
3.3.5、光穿透度分析 32
3.3.6、黏著強度分析 32
第四章 結果與討論 34
4.1、有機改質劑之合成 34
4.1.1、NMR分析 36
4.1.1.1、1H NMR 36
4.1.1.2、13C NMR與DEPT分析 37
4.1.2、FTIR分析 38
4.2、蒙脫土的有機化改質 39
4.2.1、XRD分析 39
4.2.2、改質當量(CEC值)分析 45
4.3、有機蒙脫土-環氧樹脂奈米複合材料之結構與性質分析 49
4.3.1、XRD分析 49
4.3.2、TEM分析 54
4.3.3、TGA分析 58
4.3.4、TMA分析 61
4.3.5、光穿透度分析 64
4.3.6、黏著性分析 65
第五章 結論 68
參考文獻 69
附錄 74
1. Yu-Qing Zhang, Joong-Hee Lee, Han-Jong Jang and Chang-Woon Nah, “Preparing PP/Clay Nanocomposites using a swelling agent”, Compos. Part. B-Eng., 35(2004), p.133-138.
2. M. Hussain, R. J. Varley, Z. Mathys, Y. B. Cheng, and G. P. Simon, “Effect of Organo-Phosphorus and Nano-Clay Materials on the Thermal and Fire Performance of Epoxy Resins”, J. Appl. Polym. Sci., 91(2004), p.1233-1253.
3. Kazuhisa Yano, Arimitsu Usuki, and Akane Okdad, “Synthesis and Properties of Polyimide-Clay Hybrid Films”, J. Polym. Sci. A: Polym. Chem., 35(1997), p.2289-2294.
4. M. Hussain and G. P. Simon, “Fabrication of Phosphorus-Clay Polymer Nanocomposites for Fire Performance”, J. Mater. Sci. Lett., 22(2003), p.1471-1475.
5. Chenggang Chen and David Curliss, “Preparation, Characterization, and Nanostructural Evolution of Epoxy Nanocomposites”, J. Appl. Polym. Sci., 90 (2003), p.2276-2287.
6. A. J. Kinloch and A. C. Taylor, “Mechanical and Fracture Properties of Epoxy/Inorganic Micro- and Nano-Composites”, J. Mater. Sci. Lett., 22(2003), P.1439-1441.
7. Arimitsu Usuki, Masaya Kawasumi, Yoshitsugu Kojima, Akane Okada, Toshio Kurauchi and Osami Kamigaito, “Swelling Behavior of Montmorillonite Cation Exchanged for ��-amino acids by ��-caprolactam”, J. Mater. Res., 8(5)(1993), p.1174-1178.
8. Arimitsu Usuki, Yoshitsugu Kojima, Masaya Kawasumi, Akane Okada, Yoshiaki Fukushima, Toshio Kurauchi and Osami Kamigaito, “Syntheis of nylon 6-clay hybrid”, J. Mater. Res., 8(5)(1993), p.1179-1184.
9. Yoshitsugu Kojima, Arimitsu Usuki, Masaya Kawasumi, Akane Okada, Yoshiaki Fukushima, Toshio Kurauchi and Osami Kamigaito, “Mechanical Properties of Nylon 6-Clay Hybrid”, J. Mater. Res., 8(5)(1993), p.1185-1189.
10. Y. Kojima, K. Fukumori, A. Usuki, A. Okada and T. Kurauchi, “Gas Permeabilities in rubber-clay hybrid”, Journal of Materials Science Letters, 12 (1993), p.889-890.
11. Crystal Structures of Clay Minerals and their X-Ray Identification, ed. by G. W. Brindley and G. Brown, Mineralogical Society, London, (1980).
12. Thomas J. Pinnavaia, “Intercalated Clay Catalysts”, Science, 220(1983), p.365-371.
13. I. E. Odom, “Smectite Clay Minerals: Properties and Uses”, Phil. Trans. R. Soc. Lond. A, 311(1984), p.391-409.
14. The X-Ray Identification and Crystal Structures of Clay Minerals, ed. by G. Brown, Mineralogical Society, London, (1961), Chap. IV.
15. Suprakas Sinha Ray and Masami Okamoto, “Polymer/Layered Silicate Nanocomposites”, Prog. Polym. Sci., 28(2003), p.1539-1641.
16. Michael Alexandre and Philippe Dubois, “Polymer-Layered Silicate Nanocomposites: Preparation, Properties and Uses of a New Class of Materials”, Materials Science and Engineering, 28(2000), p.1-63.
17. Blumstein A., “Polymerization of adsorbed monolayers: II. Thermal degradation of the inserted polymers”, J. Polym. Sci. A, 3(1965), p.2665-2673.
18. B. K. G. Theng, “Formation and Properties of Clay-Polymer Complexes”, Amsterdam: Elsevier, New York, (1979).
19. Nikolaus Prileschajew, “Oxidation of Unsaturated Compounds Using Organic Peroxides”, Berichte der Deutschen Chemischen Gesellschaft, 42(1909), p.4811-4815.
20. Epoxy Resins Chemistry and Technology, ed. by Clayton A. May, Marcel Dekker, (1988), Chap.1.
21. Handbook of Thermoset Plastics, 2nd Edition, ed. by Sidney H. Goodman, (1998), Chap. 6.
22. P. Schlack, U.S. Patent, 19382136928.
23. S. O. Greenlee, Guy J. Crocker, and Charles L. Weidner, “Thioxyalkanoic Acids as Epoxy Curing Agents”, J. Paint. Technol., 42(1970), p.31-36.
24. Pierre. Castan, U.S. Patent, 19432324483.
25. 馬振基,高分子複合材料上冊,正中書局,中華民國八十四年,第九章。
26. C. Decker, “Photoinitiated Crosslinking Polymerisation”, Prog. Polym. Sci., 21 (1996), p.593-650.
27. Jean Pierre Fouassier, Photoinitiation, Photopolymerization, and Photocuring”, Hanser Publishers, Munich Vienna New York, (1995).
28. John L. Dektar and Nigel P. Hacker, “Photochemistry of Diaryliodonium Salts”, J. Org. Chem., 55(1990), p.639-647.
29. C. Decker, T. Nguyen Thi Viet, D. Decker and E. Weber-Koehl, “UV-radiation curing of acrylate/epoxide systems”, polymer, 42(2001), p.5531-5541.
30. V. W. Strohmeier and C. Barbeau, “Polymerisation von Propylenoxid mit Mangandecacarbonyl nach UV-Bestrahlung”, Makromol. Chem., 81(1965), p.86-91.
31. J. J. Licari and P. C. Crepeau, U.S. Patent, 19653205157.
32. James V. Crivello, “UV and electron beam-induced cationic polymerization”, Nucl. Instrum. Meth. B, 151(1999), p.8-21.
33. UV Curing: Science and Technology, volume II, ed. by S. Peter Pappas, Technology Marketing Corporation, U.S.A., (1985), Chap. 6.
34. Jean-Pierre Fouassier, Photoinitiation, Photopolymerization, and Photocuring, Hanser Publishers, Munich Vienna, New York, (1995), Chap. 4.
35. Radiation Curing in Polymer Science and Technology, Volume II, ed. by J. P. Fouassier and J. F. Rabek, (1993), Chap. 9.
36. C. Decker, K. Zahouily, L. Keller, S. Benfarhi, T. Bendaikha, and J. Baron, “Ultrafast synthesis of bentonite-acrylate nanocomposite materials by UV-radiation Curing”, J. Mater. Sci., 37(2002), p.4831-4838.
37. L. Keller, C. Decker, K. Zahouily, S. Benfarhi, J. M. Le Meins, and J. Miehe-Brendle, “Synthesis of Polymer Nanocomposites by UV-Curing of Organoclay-Acrylic Resins”, Polymer, 45(2004), p.7437-7447.
38. S. Benfarhi, C. Decker, L. Keller, and K. Zahouily, “Syntheis of Clay Nanocomposite Materials by Light-Induced Crosslinking Polymerization”, Eur. Polym. J., 40(2004), p.493-501.
39. Fawn M. Uhl, Siva Prashanth Davuluri, Shing-Chung Wong, and Dean C. Webster, “Polymer Films Possessing Nanoreinforcements via Organically Modified Layered Silicate”, Chem. Mater., 16(2004), p.1135-1142.
40. Fawn M. Uhl, Siva Prashanth Davuluri, Shing-Chung Wong, and Dean C. Webster, “Organically Modified Montmorillonites in UV Curable Urethane Acrylate Films”, Polymer, 45(2004), 6175-6187.
41. Yuan-Hsiang Yu, Ching-Yi Lin, and Jui-Ming Yeh, “Poly(N-vinylcarbazole)-Clay Nanocomposite Materials Prepared by Photoinitiated Polymerization with Triarylsulfonium Salt Initiator”, J. Appl. Polym. Sci., 91(2004), p.1904-1912.
42. B. S. Shemper, J.-F. Morizur, M. Alirol, A. Domenech, V. Hulin, and L. J. Mathias, “Synthetic Clay Nanocomposite-Based Coatings Prepared by UV-Cure Photopolymerization”, J. Appl. Polym. Sci., 93(2004), p.1252-1263.
43. Bożena Pączkowska, Sławomir Strzelec, Beata Jędrzejewska, Lars-Åke Linden, and Jerzy Pączkowski, “Photochemical Preparation of Polymer-Clay Composites”, Appl. Clay Sci., 25(2004), p.221-227.
44. Frank Bauer and Reiner Mehnert, “UV Curable Acrylate Nanocomposites: Properties and Applications”, J. Polym. Res., 12(2005), p.483-491.
45. Christian Decker, Laurent Keller, Khalid Zahouily, and Said Benfarhi, “Synthesis of Nanocomposite Polymers by UV-Radiation Curing”, Polymer, 46(2005), p.6640-6648.
46. Fawn M. Uhl, Dean C. Webster, Siva Prashanth Davuluri, and Shing-Chung Wong, “UV Curable Epoxy Acrylate-Clay Nanocomposites”, Eur. Polym. J., 42 (2006), p.2596-2605.
47. Linda Fogelstrőm, Per Antoni, Eva Malmstrőm, and Anders Hult, “UV-Curable Hyperbranched Nanocomposite Coatings”, Prog. Org. Coat., 55(2006), p.284-290.
48. Neena Ravindran, Ankit Vora, and Dean C. Webster, “Properties of Nanocomposites Based on Maleate-Vinyl Ether Donor-Acceptor UV-Curable Systems”, J. Appl. Polym. Sci., 105(2007), p.3378-3390.
49. Katherine M. Dean, Stuart A. Bateman and Ranya Simons, “A Comparative Study of UV Active Silane-Grafted and Ion-Exchanged Organo-Clay for Application in Photocurable Urethane Acrylate Nano- and Micro-Composites”, Polymer, 48(2007), p.2231-2240.
50. Yu-Yong Wang and T.-E. Hsieh, “Preparation and Properties of Polyacrylate/Clay Photocured Nanocomposite Materials”, Chem. Mater., 17 (2005), p.3331-3337.
51. Yu-Young Wang and Tsung-Eong Hsieh, “Preparation of UV-Curable Intercalated/Exfoliated Epoxide/Acrylateclays Nanocomposite Resins”, J. Mater. Sci., 42(2007), p.4451-4460.
52. 陳志強, “OLED有機發光二極體顯示器技術”,全華圖書股份有限公司,第11章 (2007)。
53. Yoshitsugu Kojima, Arimitu Usuki, Masaya Kawasumi, Akane Okada, Toshio Kurauchi, and Osami Kamigaito, “Sorption of Water in Nylon 6-Clay Hybrid”, J. Appl. Polym. Sci., 49(1993), p.1259-1264.
54. Philip B. Messersmith and Emmanuel P. Giannelis, “Synthesis and Barrier Properties of Poly(e-caprolactone)-layered silicate nanocomposites”, J. Polym. Sci. Pol. Chem., 33(1995), p.1047-1057.
55. K. E. Strawhecker and E. Manias, “Structure and Properties of Poly(vinyl alcohol)/Na+ Montmorillonite Nanocomposites”, Chem. Mater., 12(2000), p.2943-2949.
56. R. K. Bharadwaj, “Modeling the Barrier Properties of Polymer-Layered Silicates Nanocomposites”, Macromolecules, 34(2001), p.9189-9192.
57. Russell T. McFadden, Freeport, and Russell H. Cramm, Lake Jackson, Tex., U.S. Patent, 19703514473.
58. Tzu Hsuan Chiang and T.-E. Hsieh, “A Study of Monomer’s Effect on Adhesion Strength of UV-curable Resins”, Int. J. Adhes. Adhes., 26(2006), p.520-531.
59. R. Bongiovanni, D. Mazza, S. Ronchetti, E.A. Turcato, “The Influence of Water on the Intercalation of Epoxy Monomers in Na-Montmorillonite”, J. Colloid Interf. Sci., 296(2006), p.515-519.
60. 許樹恩,吳泰伯, “X光繞射原理與材料結構分析”,中國材料科學學會,第7章 (2004)。
61. The Differential Thermal Investigation of Clays, ed. by Robert C. Mackenzie, Mineralogical Society, London, (1957), Chap. V.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔