(3.220.231.235) 您好!臺灣時間:2021/03/09 06:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳建銘
論文名稱:利用微波加熱法純化奈米碳管與在碳管上合成白金觸媒之探討
論文名稱(外文):Investigation of Purification of Carbon Nanotubes and Synthesis of Pt Catalysts on Carbon Nanotubes by Using Microwave Heating Method
指導教授:陳家富陳家富引用關係呂志鵬呂志鵬引用關係
學位類別:博士
校院名稱:國立交通大學
系所名稱:材料科學與工程系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:158
中文關鍵詞:奈米碳管微波純化白金觸媒
外文關鍵詞:carbon nanotubesmicrowavepurificationPt catalyst
相關次數:
  • 被引用被引用:1
  • 點閱點閱:125
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
奈米碳管具有獨特且優異的化學及物理特性,深具潛力應用於各個領域,例如:場發射顯示器、儲氫材料、化學感測器、奈米電子元件與複合材料等。合成奈米碳管主要的方法有:雷射蒸發法、電弧法與化學氣相沉積法,在這些方法中,過渡金屬(Fe, Co, Ni)常用來作為奈米碳管之成長之觸媒,觸媒存在奈米碳管中會降低奈米碳管的應用特性,本研究論文利用微波輔助酸處理製程去除多層管壁奈米碳管中之金屬觸媒。多層管壁奈米碳管試樣先經過超音波震盪分散後,再以微波輔助消化系統酸處理去除金屬觸媒,研究結果顯示,以熱重分析儀量測純化前後奈米碳管中殘存之金屬觸媒量。在5M硝酸中,微波消化15分鐘,金屬觸媒含量可由 10.39 wt%快速減低至1.52 wt%。利用穿透式電子顯微鏡來觀察純化前後碳管的結構與金屬觸媒,而拉曼光譜儀則探討奈米碳管之鍵結特性。結果顯示,硝酸可以快速吸收微波之熱與能,可以避免因碳管長時間浸泡於酸溶液中,而對管壁所造成的破壞,進而達到快速純化奈米碳管。另外,本論文研究並探討使用微波聚醇法有效且快速被覆白金粒子於奈米碳管上。結果顯示,添加分散劑與保護劑使白金粒子均勻有效被覆於奈米碳管表面,先對奈米碳管進行純化步驟,再利用微波聚醇法以使具有氯鉑酸之乙二醇溶液內之白金觸媒粒子被覆在奈米碳管上。為了快速形成具有高密度且均勻被覆白金粒子的奈米碳管,添加適當聚乙烯吡咯烷酮(Polyvinylpyrrolidone, PVP)與十二烷基硫酸鈉(Sodium Dodecyl Sulfate, SDS)當界面活性劑與分散劑,結果顯示微波聚醇法所合成之白金粒子約4.1nm,其粒徑分佈集中且均勻分散於奈米碳管表面。添加SDS可達到有效分散奈米碳管表面白金粒子,而不會產生聚集現象。微波聚醇法所需反應時間約1.5min,白金被覆量約54 wt%,所以微波聚醇法添加SDS、PVP可有效且快速均勻被覆白金粒子於奈米碳管上。
Carbon nanotubes (CNTs) have excellent and unique performances and versatile applications, such as field emission display, hydrogen storage, chemical sensor, nano-electronic devices and composite materials. High-quality and well-aligned carbon nanotubes are essential to the potential applications. The synthesis methods of CNTs are arc-discharge, laser vaporization, and chemical vapor deposition. Transition metal (Fe, Co, Ni) are known to be catalysts for vapor grown CNTs synthesis. CNTs may found their limited applications as they contain metal catalysts in tubes. In this thesis, microwave-assisted acidic treatment process is used to purify multi-walled carbon nanotubes. Ultrasonic shaking was first applied to disperse CNTs samples. A acidic treatment with microwave-assisted digestion system was then used to dissolve metal catalysts. The result indicated that the amounts of catalyst metals reduced from 10.39 wt% to 1.52 wt% within 15 min of microwave digestion acid treatment with 5 M HNO3. A thermo-gravimetric analysis (TGA) was used to estimate the amount of catalyst metal in CNTs. The structure of carbon nanotubes and catalyst before/after purification is characterized and TEM. The bonding characteristics of CNTs are studied by using a Raman spectrometer. That HNO3 can rapidly absorb microwave heat and energy to shorten the acid treatment time prevents the structures of CNTs from destruction. A high-yield of multi-walled carbon nanotubes with high purity is then obtained.
In the second part of the thesis, CNTs are first purified by microwave digestion and Pt nanoparticles in ethylene glycol solution with Pt precursor (H2PtCl6) are coated on CNTs by microwave polyol process. In order to briskly synthesize uniform Pt nanoparticles of high density dispersed on CNTs, poly(vinylpyrrolidone) (PVP) and sodium dodecyl sulfate (SDS) are adequately added in mixture reactants to act as the protective reagents and dispersants. The results show that Pt nanoparticles with narrow distribution and suitable diameter of about 4.1 nm were highly dispersed and loaded on the surface of CNTs by microwave digestion method. SDS was added to increase the dispersion of Pt on CNTs and to reduce the aggregation phenomenon. The microwave polyol processing duration was below 1.5min and the loading amount of Pt on CNTs was about 52 wt%. Pt nanoparticles can be uniformly and rapidly dispersed on CNTs by microwave polyol process with the addition of SDS and PVP.
Abstrac(Chinese)..........................................Ⅰ
Abstract (English)........................................Ⅱ
Acknowledgement...........................................Ⅴ
Contents..................................................Ⅵ
Table Captions............................................Ⅸ
Figure Captions...........................................Ⅹ
Chapter 1 Introduction....................................1
1.1 Carbon nanotubes.......................................1
1.1.1 Structure and properties of carbon nanotubes.........2
1.1.1.1 Structure of carbon nanotubes......................2
1.1.1.2 Electronic properties of carbon nanotubes..........4
1.1.1.3 Mechanical properties carbon nanotubes.............7
1.1.2 Applications of carbon nanotubes.....................8
1.1.2.1 Energy storage.....................................8
1.1.2.2 Hydrogen storage...................................9
1.1.2.3 Lithium intercalation..............................9
1.1.2.4 Electrochemical supercapacitors...................10
1.1.2.5 Field emitting devices............................10
1.1.2.6 Transistors.......................................11
1.1.2.7 Nanoprobes and sensors............................11
1.1.2.8 Composite materials...............................12
1.1.2.9 Templates.........................................14
1.1.3 Carbon nanotube synthesis...........................14
1.1.3.1 Arc discharge.....................................14
1.1.3.2 Laser ablation....................................15
1.1.3.3 Catalytic chemical vapor deposition (CVD).........16
1.1.3.4 Catalytic growth mechanisms of carbon nanotubes...17
1.2 Fuel cell.............................................18
1.2.1 Classification of fuel cells........................19
1.2.1.1 Polymer electrolyte membrane fuel cell............20
1.2.1.2 Phosphoric acid fuel cell.........................21
1.2.1.3 Alkaline fuel cell................................21
1.2.1.4 Molten carbonate fuel cell........................22
1.2.1.5 Solid oxide fuel cell.............................23
1.2.2 Potential of direct methanol fuel cell..............24
1.3 Microwave Chemistry...................................27
1.3.1 Microwave-assisted synthesis of metallic nanostructures............................................27
1.3.2 Possible effects of MW heating......................29
1.3.2.1 Thermal effects...................................29
1.3.2.2 Effects of hot spots and hot surfaces.............30
1.3.2.3 Superheating......................................30
1.3.2.4 Non-thermal effects...............................30
1.4 Motivation of this thesis.............................30
Chapter 2 Literature Review..............................34
2.1 Purification of carbon nanotubes......................34
2.1.1 Thermal oxidation...................................34
2.1.2 Microfiltration and ultrasonically assisted filtration................................................34
2.1.3 Acid treatment......................................35
2.1.4 Thermal oxidation combined with acid treatment......36
2.2 Fundamental and structure of DMFC.....................37
2.2.1 The Proton Exchange Membrane (PEM)..................37
2.2.2 Electrodes Structure of DMFC........................40
2.2.3 Anode structure and principle of DMFC...............41
2.2.4 Cathode structure and principle of DMFC.............42
2.2.5 Limits of DMFC......................................46
Chapter 3 Experimental Details...........................50
3.1 Experiment Procedures.................................50
3.1.1 Experiment flow chart of purification process.......50
3.1.2 Experiment flow chart of Pt-synthesis process.......51
3.2 Experiment equipments.................................52
3.2.1 Microwave system....................................52
3.3 Analysis instruments..................................53
3.3.1 Thermogravimetric Analyzer (TGA)....................53
3.3.2 Scanning Electron Microscopy (SEM)..................54
3.3.3 Transmission Electron Microscopy (TEM)..............54
3.3.4 Raman Spectroscopy..................................55
3.3.5 Energy Dispersive X-ray Analysis (EDX)..............56
3.3.6 X-ray Diffraction (XRD).............................56
3.3.7 Cyclic Voltammetry (CV).............................57
Chapter 4 Purification of MWCNTs Using Microwave Heating Method....................................................59
4.1 Purification of MWCNTs Synthesized by ECR-CVD.........59
4.1.1 Sample Preparation and Experiment Procedures........59
4.1.2 Characterization of the Purified MWCNTs and Discussions...............................................59
4.1.3 Summary.............................................65
4.2 The effects of different experiment conditions on purification of MWCNTs....................................66
4.2.1 Experiment Conditions and Procedures................66
4.2.2 Characterizations of MWCNTs of various experiment conditions and discussions................................67
4.2.3 Summary.............................................76
4.3 Purification efficiency of multi-walled carbon nanotubes synthesized by thermal chemical vapor deposition................................................77
4.3.1 Experiment condition and procedures.................77
4.3.2 Characterizations and discussion....................77
4.3.3 Summary.............................................83
4.4 Reaction Model of Microwave-Assisted Purification of MWCNTS....................................................84
4.4.1 TEM analysis and tube opening.......................84
4.4.2 TGA analysis and purification efficiency............87
4.4.3 Microwave assisted technique and reaction model.....88
4.4.4 Summary.............................................93
Chapter 5 Coating Pt Particles on CNTs as DMFC Electrode Using Microwave Heating Method............................95
5.1 Experiment Procedures to Synthesize Pt Catalyst on MWCNTs....................................................95
5.2 The effects of solutions on Pt particles synthesis....96
5.3 The effect of PVP molecular weight on particle size and dispersion...............................................107
5.4 The Effect of SDS on Pt particle dispersion..........110
5.5 The effect of temperature on loading amount of Pt....119
5.6 The effect of time on Pt loading amount..............128
5.7 Electrochemical properties of Pt/MWCNTs electrode....140
5.8 Conclusions of Microwave-assisted synthesis Pt/MWCNTs electrode ...............................................142
Chapter 6 Conclusions...................................143
References...............................................145
[1] M. S. Dresselhaus, G. Dresselhaus, P. C. Eklund, Boston (1996).
[2] R. Saito, G. Dresselhaus, M. S. Dresselhaus, Imperial College Press, London (1998).
[3] http://smalley.rice.edu/images/allotropes.jpg
[4] R. Saito, M. Fujita, G. Dresselhaus, M. S. Dresselhaus, Appl. Phys. Lett. 60 (1992) 2204.
[5] M. S. Dresselhaus, G. Dressehaus, and R. Saito, Carbon, 33 (1995) 883.
[6] S. Iijima, T. Ichihashi, Y. Ando, Nature 356 (1992) 776.
[7] L. Chico, V.H. Crespi, L.X. Benedict, S.G. Louie, M.L. Cohen, Phys Rev Lett 76 (1996) 971.
[8] J. M. Bonard, H. Kind, T. Stöckli, L. O. Nilsson, Solid State Electronics 45 (2001)
893.
[9] E. T. Thostenson, Z. Ren, T. W. Chou, Composites Science and Technology 61 (2001) 1899.
[10] K. Tanaka, K. Okahara, M. Okada, T. Yamabe, Chem. Phys. Lett. 191 (1992) 469.
[11] S. Iijima, Nature 354 (1991) 56.
[12] D. Bernaerts, M. Op De Beeck, S. Amelinckx, J. Van Landuyt, G. Van Tendeloo, Philos. Mag. A 74 (1996) 723.
[13] X. F. Zhang, X. B. Zhang, G. Van Tendeloo, S. Amelinckx, M. Op de Beeck, J. Van Landuyt, J. Cryst. Growth 130 (1993) 3.
[14] N. Hamada, S.-I. Sawada, A. Oshiyama, Phys. Rev. Lett. 68 (1992) 1579.
[15] X. Blase, L.X. Benedict, E.L. Shirley, S.G. Louie, Phys. Rev. Lett. 72 (1994) 1878.
[16] J.W. Mintmire, C.T. White, Carbon 33 (1995) 893.
[17] C.L. Kane, E.J. Mele, Phys. Rev. Lett. 78 (1997) 1932.
[18] P.R. Wallace, Phys. Rev. 71 (1947) 622.
[19] J.W.G. Wildöer, L.C. Venema, A.G. Rinzler, R.E. Smalley, C. Dekker, Nature 391 (1998) 59.
[20] T.W. Odom, J.L. Huang, P. Kim, C.M. Lieber, Nature 391 (1998) 62.
[21] L.C. Venema, J.W.G. Wildöer, C. Dekker, A.G. Rinzler, R.E. Smalley, Appl. Phys. A 66 (1998) S153.
[22] T.W. Odom, J.L. Huang, P. Kim, C.M. Lieber, J. Phys. Chem. B 104 (2000) 2794.
[23] L.C. Venema, J.W.G. Wildöer, J.W. Janssen, S.J. Tans, H.L.J. Temminck Tuinstra, L.P. Kouwenhoven, C. Dekker, Science 283 (1999) 52.
[24] P. Kim, T.W. Odom, J.-L. Huang, C.M. Lieber, Phys. Rev. Lett. 82 (1999) 1225.
[25] S.J. Tans, A.R.M. Verschueren, C. Dekker, Nature 393 (1998) 49.
[26] R. Martel, T. Schmidt, H.R. Shea, T. Hertel, Ph. Avouris, Appl. Phys. Lett. 73 (1998) 2447.
[27] M. Bockrath, D.H. Cobden, P.L. McEuen, N.G. Chopra, A. Zettl, A. Thess, R.E. Smalley, Science 275 (1997) 1922.
[28] S.J. Tans, M.H. Devoret, H. Dai, A. Thess, R.E. Smalley, L.J. Geerligs, C. Dekker, Nature 386 (1997) 474.
[29] S.J. Tans, M.H. Devoret, R.J.A. Groeneveld, C. Dekker, Nature 394 (1998) 761.
[30] M. Bockrath, D.H. Cobden, J. Lu, A.G. Rinzler, R.E. Smalley, L. Balents, P.L. McEuen, Nature 397 (1999) 598.
[31] A. Bachtold, C. Strunk, J.-P. Salvetat, J.-M. Bonard, L. Forró, T. Nussbaumer, C. Schönenberger, Nature 397 (1999) 673.
[32] H.T. Soh, C.F. Quate, A.F. Morpurgo, C.M. Marcus, J. Kong, H. Dai, Appl. Phys. Lett. 75 (1999) 627.
[33] C. Schönenberger, A. Bachtold, C. Strunk, J.-P. Salvetat, L. Forró, Appl. Phys. A 69 (1999) 283.
[34] J. Kong, C. Zhou, A. Morpurgo, H.T. Soh, C.F. Quate, C. Marcus, H. Dai, Appl. Phys. A 69 (1999) 305.
[35] K. Liu, M. Burghard, S. Roth, P. Bernier, Appl. Phys. Lett. 75 (1999) 2494.
[36] P.L. McEuen, M. Bockrath, D.H. Cobden, Y.-G. Yoon, S.G. Louie, Phys. Rev. Lett. 83 (1999) 5098.
[37] H. Dai, E.W. Wong, C.M. Lieber, Science 272 (1996) 523.
[38] L. Langer, V. Bayot, E. Grivei, J.-P. Issi, J.P. Heremans, C.H. Olk, L. Stockman, C. Van Haesendonck, Y. Bruynseraede, Phys. Rev. Lett. 76 (1996) 479.
[39] T.W. Ebbesen, H.J. Lezec, H. Hiura, J.W. Bennett, H.F. Ghaemi, T. Thio, Nature 382 (1996) 54.
[40] B.I. Yakobson, C.J. Brabec, J. Bernholc, Phys. Rev. Lett. 76 (1996) 2511.
[41] B.I. Yakobson, G. Samsonidze, G.G. Samsonidze, Carbon 38 (2000) 1675.
[42] M.M.J. Treacy, T.W. Ebbesen, T. M. Gibson, Nature 381 (1996) 678.
[43] E.W. Wong, P.E. Sheehan, C.M. Lieber, Science 277 (1997) 1971.
[44] D.A. Walters, L.M. Ericson, M.J. Casavant, J. Liu, D.T. Colbert, K.A. Smith, R.E. Smalley, Appl. Phys. Lett. 74 (1999) 3803.
[45] M.-F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelly, R.S. Ruoff, Science 287 (2000) 637.
[46] M.-F. Yu, B.S. Files, S. Arepalli, R.S. Ruoff, Appl. Phys. Lett. 84 (2000) 5552.
[47] http:// 140.114.18.223/~hcshih/diamond/nanotube.html (2000).
[48] Ajayan, P. M. and Zhou, O. Z., Carbon Nanotubes, 80 (2001) 391
[49] Baughman, R. H., Zakhidov, A. A., and de Heer, W. A., Science, 297 (2002) 787
[50] D.Rotman, Natuur & Techniek, 70 (2002) 30
[51] S. Iijima, Nature 354 (1991) 56.
[52] T.W. Ebbesen, P.M. Ajayan, Nature 358 (1992) 220.
[53] S. Iijima, T. Ichihashi, Nature 363 (1993) 603.
[54] D.S. Bethune, C.H. Klang, M.S. de Vries, G. Gorman, R. Savoy, J. Vazquez, R. Beyers, Nature 363 (1993) 605.
[55] J. Abrahamson, P.G. Wiles, B.L. Rhoades, Carbon 37 (1999) 1873.
[56] P.A. Thrower, Carbon 37 (1999) 1677.
[57] X.K. Wang, X.W. Lin, V.P. Dravid, J.B. Ketterson, R.P.H. Chang, Appl. Phys. Lett. 66 (1995) 2430.
[58] H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, R. E. Smalley, Nature 318 (1985) 162.
[59] T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, R. E. Smalley, Chem. Phys. Lett. 243 (1995) 49.
[60] T. Guo, P. Nikolaev, A.G. Rinzler, D. Tománek, D.T. Colbert, R.E. Smalley, J. Phys. Chem. 99 (1995) 10694.
[61] A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y.H. Lee, S.G. Kim, A.G. Rinzler, D.T. Colbert, G.E. Scuseria, D. Tománek, J.E. Fischer, R.E. Smalley, Science 273 (1996) 483.
[62] A.G. Rinzler, J. Liu, H. Dai, P. Nikolaev, C.B. Huffman, F.J. Rodriguez-Macias, P.J. Boul, A.H. Lu, D. Heymann, D.T. Colbert, R.S. Lee, J.E. Fischer, A.M. Rao, P.C. Eklund, R.E. Smalley, Appl. Phys. A 67 (1998) 29.
[63] B. I. Yakobson, R. E. Smalley, Am. Sci. 85 (1997) 324.
[64] P.L. Walker Jr, J.F. Rakszawski, G.R. Imperial, J. Phys. Chem. 63 (1959) 133.
[65] M.S. Kim, N. M. Rodriguez, R.T.K. Baker, J. Catal. 131 (1991) 60.
[66] M. José-Yacamán, M. Miki-Yoshida, L. Rendón, J.G. Santiesteban, Appl. Phys. Lett. 62 (1993) 657.
[67] V. Ivanov, J.B. Nagy, P. Lambin, A. Lucas, X.B. Zhang, X.F. Zhang, D. Bernaerts, G. Van Tendeloo, S. Amelinckx, J. Van Landuyt, Chem. Phys. Lett. 223 (1994) 329.
[68] K. Hernadi, A. Fonseca, J.B. Nagy, D. Bernaerts, J. Riga, A. Lucas, Synthetic Metals 77 (1996) 31.
[69] A. Fonseca, K. Hernadi, P. Piedigrosso, J.-F. Colomer, K. Mukhopadhyay, R. Doome, S. Lazarescu, L.P. Biro, Ph. Lambin, P.A. Thiry, D. Bernaerts, J.B. Nagy, Appl. Phys. A 67 (1998) 11.
[70] P. Nikolaev, M.J. Bronikowski, R.K. Bradley, F. Rohmund, D.T. Colbert, K.A. Smith, R.E. Smalley, Chem. Phys. Lett. 313 (1999) 91.
[71] J. Kong, A.M. Cassell, H. Dai, Chem. Phys. Lett. 292 (1998) 567.
[72] M. Ge, K. Sattler, Appl. Phys. Lett. 64 (1994) 710.
[73] G. Che, B.B. Lakshmi, C.R. Martin, E.R. Fisher, R.S. Rouff, Chem. Mater. 10 (1998) 260.
[74] R. T. K. Baker, P. S. Harris, Chem. Phys. Carbon 14 (1978) 83.
[75] S.B. Sinnott, R. Andrews, D. Qian, A.M. Rao, Z. Mao, E.C. Dickey, F. Derbyshire, Chem. Phys. Lett. 315 (1999) 25.
[76] R. Andrews, D. Jacques, A.M. Rao, F. Derbyshire, D. Qian, X. Fan, E.C. Dickey, J. Chen, Chem. Phys. Lett. 303 (1999) 467.
[77] R.T.K. Baker, Carbon 27 (1989) 315.
[78] The first reference to microwave temperature-jump expenments can be found in 1967 Later an improved modification of this method was reported E F Caldin and J P Field, J Chem SOC Faraday Trans I ,78 (1982)1923
[79] S W Liu and J P Wightman, J Appl Chem Biotechnol, 21 (1971)168
[80] R N Gedye, W Rank and K C Westaway, Can J Chem, 69 (1991) 706
[81] R Hicks and G Majetich, J Microwave Power Electromagn Eng, 30 (1995) 27
[82] F. Fievet, J. P. Lagier, B. Blin, B. Beaudoin, M. Fiflarz, Solid State Ionics, 32/33 (1989)198.
[83] a) P.-Y. Silvert, R. Herrera-Urbina; N. Duvauchelle, V. Vijayakrishnan, K. Tekaia-Elhsissen, J. Mater. Chem., 6 (1996) 573; b) P.-Y. Silvert, R. Herrera-Urbina, K. Tekaia-Elhsissen, J. Mater. Chem., 7 (1997) 293.
[84] M. S. Hedge, D. Larcher, L. Dupont, B. Beaudoin, K. Tekaia-Elhsissen, J. M. Tarascon, Solid State Ionics, 93 (1997) 33.
[85] Y. Wada, H. Kuramoto, T. Sakata, H. Mori, T. Sumida, T. Kitamura, S. Yanagida, Chem. Lett., 28 (1999) 607.
[86] W. Tu, H. Liu, J. Mater. Chem., 10 (2000) 2207.
[87] Z. L. Jiang, Z. W. Feng, X. C. Shen, Chin. Chem. Lett., 12 (2001) 551.
[88] M. Tsuji, M. Hashimoto, T. Tsuji, Chem. Lett., 31 (2002) 1232.
[89] I. Pastoriza-Santos, L. Liz-Marz_n, Langmuir, 18 (2002) 2888.
[90] S. Komarneni, D. Li, B. Newalkar, H. Katsuki, A. S. Bhalla, Langmuir, 18 (2002) 5959.
[91] R. He, X. Qian, J. Yin, Z. Zhu, J. Mater. Chem., 12 (2002) 3783.
[92] R. He, X. Qian, J. Yin, Z. Zhu, Chem. Phys. Lett., 369 (2003) 454.
[93] F. K. Liu, C. J. Ker, Y. C. Chang, F. H. Ko, T. C. Chu, B. T. Dai, Jpn. J. Appl. Phys. Part 1, 42 (2003) 4152.
[94] M. Tsuji, M. Hashimoto, Y. Nishizawa, T. Tsuji, Chem. Lett., 32 (2003) 1114.
[95] Y. J. Zhu, X. L. Hu, Chem. Lett., 32 (2003) 1140.
[96] R. Harpeness, A. Gedanken, A. M. Weiss, M. A. Slifkin, J. Mater. Chem., 13 (2003) 2603.
[97] T. Yamamoto, Y. Wada, T. Sakata, H. Mori, M. Goto, S. Hibino, S. Yanagida, Chem. Lett., 33 (2004) 158.
[98] M. Tsuji, Y. Nishizawa, M. Hashimoto, T. Tsuji, Chem. Lett., 33 (2004) 370.
[99] W. X. Chen, J. Zhao, J. Y. Lee, Z. L. Liu, Chem. Lett., 33 (2004) 474.
[100] F. Liu, Y. Chang, F. Ko, and T. Chu, Mater. Lett., 58 (2004) 373.
[101] Y. J. Zhu, X. L. Hu, Mater. Lett., 58 (2004) 1517.
[102] M. Tsuji, M. Hashimoto, Y. Nishizawa, T. Tsuji, Mater. Lett., 58 (2004) 2326.
[103] M. Tsuji, M. Hashimoto, Y. Nishizawa, T. Tsuji, Hoshasen Kagaku, Radiation Chem., 77 (2004) 8
[104] T. Yamamoto, H. Yin, Y. Wada, T. Kitamura, T. Sakata, H. Mori, S. Yanagida, Bull. Chem. Soc. Jpn., 77 (2004) 757.
[105] O. Palchik, R. Kerner, A. Gedanken, A. M. Weiss, M. A. Slifkin, V. Palchik, J. Mater. Chem., 11 (2001) 874.
[106] Y. Wada, H. Kuramoto, J. Anand, T. Kitamura, T. Sakata, H. Mori, S. Yanagida, J. Mater. Chem., 11 (2001) 1936.
[107] T. Yamamoto, Y. Wada, H. Yin, T. Sakata, H. Mori, S. Yanagida, Chem. Lett., 31 (2002) 964.
[108] T. Ding, J. Zhang, S. Long, J. Zhu, Microelectron. Eng., 66 (2003) 46.
[109] H. Grisaru, O. Palchik, A. Gedanken, V. Palchik, M. A. Slifkin, A. M. Weiss, Inorg. Chem., 42 (2003) 7148.
[110] Z. L. Liu, X. Y. Ling, J. Y. Lee, X. D. Su, L. M. Gan, J. Mater. Chem., 13 (2003) 3049.
[111] Z. L. Liu, J. Y. Lee, W. X. Chen, M. Han, L. M. Gan, Lamgmuir, 20 (2004) 181.
[112] R. Harpeness, A. Gedanken, Langmuir, 20 (2004) 3431.
[113] Microwave-Enhanced Chemistry: Fundamentals, Sample Preparation, Applications (Eds.: H. M. Kingston, S. J. Haswell), American Chemical Society, Washington DC, 1997.
[114] S. A. Galema, Chem. Soc. Rev., 26 (1997) 233.
[115] R. Andrews, D. Jacques. D. Qian, E. C. Dickey, Carbon 39 (2001) 1681.
[116] P. X. Hou, S. Bai, Q. H. Yang, C. Lin, H. M. Cheng, Carbon 40 (2002) 81.
[117] M. Yumura, S. Ohshima, K. Uchida, Y. Tasaka, Y. Kuriki, F. Ikazaki, Y. Saito, S. Uemura, Diamond and Relat. Mater. 8 (1999) 785.
[118] Y. Saito, K. Hamaguchi, K. Hata, K. Tohji, A. Kasuya, Y. Nishina, K. Uchida, Y. Tasaka, F. Ikazaki, M. Yumura, Ultramicroscopy 73 (1998) 1.
[119] Y. Ando, X. Zhao, H. Kataura, Y. Achiba, K. Kaneto, M. Tsuruta, S. Uemura, S. Iijima, Diamond and Relat. Mater. 9 (2000) 847.
[120] Y. S. Park, Y. C. Choi, K. S. Kim, D. C. Chung, D. J. Bae, K. H. An, S. C. Lim, X. Y. Zhu, Y. H. Lee, Carbon 39 (2001) 655.
[121] S.C. Tsang, P.J.F. Harris, M.L.H. Green, Nature 362(1993) 520.
[122] T. Y .Ebbesen, P. M. Ajaya, F .H .Liou, H. Hiura, K. Tangaki, Nature 367(1997) 519.
[123] K. Tohji, H. Takahashi, Y. Shinoda, N. Shimizu, B. Jeyadevan, I. Matsuoka, Y. Saito, A.Kasuya, S. Ito, Y. Nishina, J. Phys. Chem. B 101(1997) 1974.
[124] B. Liu, T. Wagberg, E. Olssen, R. Yang, H. Li, S. Zhang, H. Yang, G. Zou, B. Sundqvist, Chem. Phys. Lett. 321(2000)365.
[125] K.B. Shelimov, R. O. Esenaliev, A. G. Rinzler, C. B. Huffman, R. E. Smalley, Chem. Phys. Lett. 282(1998) 429.
[126] J. M. Moon, K. H. An, Y. H. Lee, Y. S. Park, D. J. Bae, G. S. Park, J. Phys. Chem. B105(2001) 5677.
[127] M. Zhang, M. Yudasaka, A. Koshio, S. Iijima, Chem. Phys, Lett. 349 (2001) 25.
[128] D. Chattopadhyay, I. Galeska, F. Papadimitrakopoulos, Carbon 40 (2002) 985.
[129] X. H. Chen, C. S. Chen, Q. Chen, F. Q. Cheng, G. Zhang, Z. Z. Chen, Materials Lett. 57(2002) 734.
[130] H. Kajiura, S. Tsutsui, H. Huang, Y. Murakami, Chem. Phys, Lett. 364 (2002) 586.
[131]S. Bandow, A. M. Rao, K. A. Williams, A. Thess, R. E. Smalley, P. C. Eklund, J. Phys. Chem. B, 101 (1997) 8839.
[132] Y. Ando, X. Zhao, S. Inoue, S. Iijima, Journal of Crystal Growth 237-239 (2002) 1926.
[133] I. W. Chiang, B. E. Brinson, A. Y. Huang, P. A. Willis, M. J. Bronikowski, J. L. Margrave, R. E. Smalley, R. H. Hauge, J. Phys. Chem. B 105 (2001) 8297.
[134] US EPA Method 3051,” Microwave-Assisted Acid Digestion of Sediments, Sludges, Soils and Oils”, Washington DC, (1994)
[135] K. A. Mauritz, C. J.Hora, A. J. Hopfinger, Advances in Chemistry 187 (1980) 124
[136] H. L. Yeager, A. J. Steck, Electrochem. Soc.128 (1981) 1880
[137] A. Eisenberg, B. Hird, R. B. Moore, ”A new multiplet-cluster model for the morphology of random ionomers”, Macromolecules 23 (1990) 4098
[138] T. D. Gierke, G. E. Munn, F. C. Wilson, J. Polym. Sci.19 (1981) 1687
[139] G. B. Butler, K. F.O’Driscoll, G. L. Wilkes, Chem. Phys. C34 (1994) 325
[140] A. Eisenberg and H. L. Yeager, ACS Symp. Ser. No.180, American Chemical Society: Washington, DC, (1982) pp. 1-6, 41-63,
[141] L.A. Utracki and R.A. Weiss, ACS Symp. Ser. No. 395; American Chemical Society: Washington, DC, (1989) 401
[142] A. Eisenberg and M. King, Ion-Containing Polymers: Physical Properties and Structure, Vol. 2, (1977) 163
[143] W. Y. Hsu, T. D. Gierke, Macromolecules 15 (1982) 101
[144] A. V. Anantaraman, C. L. Gardner, ” Studies on ion-exchange membranes. Part 1. Effect of humidity on the conductivity of Nafion®”, J. Electroanal. Chem. 414 (1996) 115
[145] C. S. Kim, Y. G. Chun, D. H. Peck, D. R. Shin, “ A novel process to fabricate membrane electrode assemblies for proton exchange membrane fuel cells “ Int. J. Hydrogen Energy 23 (1998) 1045
[146] D.Bevers, N. Wagner, M. VonBradke,“ Innovative production procedure for low cost PEFC electrodes and electrode/membrane structures “ Int. J. Hydrogen Energy 24 (1998) 57
[147] L. Giorgi, E. Antolini, A. Pozio, E. Passalacqua, “Influence of the PTFE content in the diffusion layer of low-Pt loading electrodes for polymer electrolyte fuel cells ”, Electrochim. Acta 43, (1998) 3675
[148] H. S.Wroblowa, Y. C. Pan, G. J. Razumnet, Electroanal. Chem. 69, 195, 1976.
[149] A. J. Appleby, M. J.Savy, Electroanal. Chem., 92 (1978) 15
[150] R. W. Zurilla, R. K. Sen, E. J.Yeager, Electrochem. Soc. 125 (1978) 1103
[151] Gruver, G. A.; Pascoe, R. F.; Kunz, H. R. J. Electrochem. Soc. 127 (1980) 1219
[152] M. C. Lefebvre, Z. Qi, P. G. Pickup,” Electronically Conducting Proton Exchange Polymers as Catalyst Supports for Proton Exchange Membrane Fuel Cells. Electrocatalysis of Oxygen Reduction, Hydrogen Oxidation, and Methanol Oxidation”, J. Electrochem. Soc. 146 (1999) 2054
[153] J. Shan, P. G. Pickup,” Characterization of polymer supported catalysts by cyclic voltammetry and rotating disk voltammetry ”, Electrochim. Acta 46 (2000) 119
[154] I. D. Raistri, Symposium on Diaphragms, Separators, and Ion-Exchange Membranes, Pennington, NJ (1986) 172
[155] S. Srinivasan, D. J. Manko, H. Koch, M. A. Enayetullah, A.J. Appleby, “Recent advances in solid polymer electrolyte fuel cell technology with low platinum loading electrodes ”, J. Power Sources, 29 (1990) 367
[156] S. Hirano, J.Kim, S. Srinivasan, ” High performance proton exchange membrane fuel cells with sputter-deposited Pt layer electrodes”, Electrochim. Acta 42 (1997) 1587
[157] S. Y. Cha, W. M. Lee,” Performance of Proton Exchange Membrane Fuel Cell Electrodes Prepared by Direct Deposition of Ultrathin Platinum on the Membrane Surface”, J. Electrochem. Soc. 146 (1999) 4055
[158] A. Hamnett, “Mechanism and electrocatalysis in the direct methanol fuel cell “, Catal. Today 38 (1997) 445
[159] S. Wasmus, A. Kuver, “Methanol oxidation and direct methanol fuel cells: a selective review”, J. Electroanal. Chem. 461 (1999) 14
[160] T. Matsumoto, T. Komatsu, K. Arai, T. Yamazaki, M. Kijima, H. Shimizu, Y. Takasawa, J. Nakamura, “Reduction of Pt usage in fuel cell electrocatalysts with carbon nanotube electrodes”, Chem. Commun. 7 (2004) 840
[161] W. Y. Yu, W. X. Tu, H. F. Liu, Langmuir 15 (1999) 6.
[162] W. X. Tu, H. F. Liu, Chem. Mater. 12 (2000) 564.
[163] V. Mehta, J. S. Cooper, J. Power Sources 114 (2003) 32.
[164] E. Antolini, Mater. Chem. Phys. 78 (2003) 563.
[165] T. S. Armadi, Z. L. Wang, T. C. Green, A. Henglein, M. A. El-Sayed, Science 272 (1996) 1924.
[166] J. Kiwi, M. Gratzel, J. Am. Chem. Soc. 101 (1979) 7214.
[167] G. Schmid, Chem. Rev. 92 (1992) 1709.
[168] M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, R. Whyman, J. Chem. Soc., Chem. Commun. 7 (1994) 801.
[169] K. Y. Chan, J. Ding, J. Ren, S. Cheng, K. Y. Tsang, J. Mater. Chem. 14 (2004) 505.
[170] Z. L. Liu, J. Y. Lee, M. Han, W. X. Chen, L. M. Gan, J. Mater. Chem. 12 (2002) 2453.
[171] Y. H. Lin, X. L. Cui, C. H. Yen, C. M. Wai, Langmuir 21 (2005) 11474.
[172] K. Okitsu, A. Yue, S. Tanabe, H. Matsumoto, Chem. Mater. 12 (2000) 3006.
[173] T. Fujimoto, S. Teraushi, H. Umehara, I. Kojima, W. Henderson, Chem. Mater. 13 (2001) 1057.
[174] L. K. Kurihara, G. M. Chow, P. E. Schoen, Nanostruct. Mater. 5 (1995) 607.
[175] F. Bonet, V. Delmas, S. Grugeon, R. H. Urbina, P. Y. Silvert, K. Tekaia-Elhsissen, Nanostruct. Mater. 11 (1999) 1277.
[176] C. L. Sun, L. C. Chen, M. C. Su, L. S. Hong, O. Chyan, C. Y. Hsu, K. H. Chen, T. F. Chang,�n L. Chang�z, Chem. Mater. 17 (2005) 3749.
[177] http://www.milestonesci.com/dig-products.php
[178] http://www.tainstruments.com/product.aspx?id=20&n=1&siteid=11
[179] A. C. Dillon, T. Gennett, K. M. Jones, J. L. Alleman, P. A. Parilla, and M. J. Heben, Adv. Mater. 11 (1999) 1354.
[180] J. F. Colomer, P. Piedigrosso, A. Fornseca, Synth. Met. 103 (1999) 2482.
[181] V. Lordi, S. X. C. Ma, and N. Yao: Surface Science 421 (1999) 150.
[182] R. N. Gedye, W. Rank, and K. C. Westaway: Can. J. Chem. 69 (1991) 706.
[183] R. Hicks, and G. Majetich: J. Microwave Power Electromagn. Eng. 30 (1995) 27.
[184] F. K. Liu, C. J. Ker, Y. C. Chang, F. H. Ko, T. C. Chu, and B. T. Dai: Jpn. J. Appl. Phys. Part 1 42 (2003) 4152.
[185] M. Tsuji, M. Hashimoto, Y. Nishizawa, and T. Tsuji: Chem. Lett. 32 (2003) 1114.
[186] M. Tsuji, M. Hashimoto, Y. Nishizawa, and T. Tsuji: Radiation Chem. 77 (2004) 8.
[187] Y. J. Zhu, and X. L. Hu: Chem. Lett. 32 (2003) 1140.
[188] F. Liu, Y. Chang, F. Ko, and T. Chu: Mater. Lett. 58 (2004) 373.
[189] R. He, X. Qian, J. Yin, and Z. Zhu: J. Mater. Chem. 12 (2002) 3783.
[190] M. Tsuji, M. Hashimoto, Y. Nishizawa, M. Kubokawa, and T. Tsuji: Chem. Eur. J. 11 (2005) 440.
[191] R. Laurent, A. Laportene, J. Dubac, J. Berlan, S. Lefeuvre, and M. Audhuy : J. Org. Chem. 57 (1992) 7099.
[192] A. Wadhawan, D. Grarrett, and J. M. Perez: Appl. Phys. Lett. 83 (2003) 2683.
[193] J. Cheng, R. Roy, and D. Agrawal: J. Mater. Sci. Lett. 20 (2001) 1561.
[194] D. Michael, P. Mingos, and D. R. Baghurst: Chem. Soc. Rev. 20 (1991) 1.
[195] R. Roy, D. Agrawal, J. Cheng, and S. Gedevanishvili: Nature 399 (1999) 668.
[196] C. G. Koops: Phys. Rev. 83 (1951) 121.
[197] P. A. Miles, W. B. Westphal, and A. von Hippel: Rev. Mod. Phys. 29 (1957) 279.
[198] S. Ruan, B. Xu, H. Suo, F. Wu, S. Xiang, and M. Zhao: J. Magn. Magn. Mater. 212 (2000) 175.
[199] C. M. Chen, M. Chen, F. C. Leu, S. Y. Hsu, S. C. Wang, S. C. Shi, C. F. Chen, Diam. Relat. Mater. 13 (2004) 1182.
[200] C. M. Chen, M. Chen, Y. W. Peng, C. H. Lin, L. W. Chang, C. F. Chen, Diam. Relat. Mater. 14 (2005) 798.
[201] Y. T. Kim, T. Mitani, J. Catal. 238 (2006) 394.
[202] S. Mukerjee, J. McBreen, J. Electroanal. Chem. 448 (1998)163.
[203] B. Xue, P. Chen, Q. Hong, J. Y. Lin, K. L. Tan, J. Mater. Chem. 11 (2001) 2378.
[204] C. Ma, C. Li, J. Colloid Interface Sci. 131 (1989) 485
[205] V. V. Didenko, V. C. Moore, D. S. Baskin, R. E. Smalley, Nano Lett. 5 (2005) 1563.
[206] W. Chen, J. Zhao, J. Y. Lee, Z. Liu, Mater. Chem. Phys. 91 (2005) 124.
[207] Minoru Umeda, Mitsuhiro Kokubo, Mohamed Mohamedi and Isamu Uchida, Electrochimica Acta 10 (2003) 1367
[208] S.Kerkeni, E. Lamy-Pitara,.J.Barbier, Catal. Today 75 (2002) 35
[209] H. Wang, T. Loffler, H. Baltruschat, J. Appl. Electrochem. 31 (2001) 759
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔