(3.237.97.64) 您好!臺灣時間:2021/03/03 03:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:白逸維
研究生(外文):Pai Yi-Wei
論文名稱:具有部分隨機匹配的12位元250百萬赫芝電流式互補式金氧化半導體數位類比轉換器
論文名稱(外文):12-bit 250MSample/s Current-Steering CMOS D/A Converters with Partial Random Element Matching
指導教授:洪崇智
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電機學院IC設計產業專班
學門:商業及管理學門
學類:其他商業及管理學類
論文種類:學術論文
論文出版年:2007
畢業學年度:96
語文別:英文
論文頁數:69
中文關鍵詞:數位類比轉換器
外文關鍵詞:DACdata converter
相關次數:
  • 被引用被引用:0
  • 點閱點閱:257
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:44
  • 收藏至我的研究室書目清單書目收藏:0
高速數位類比轉換器是目前高效能系統,如資料通訊系統中不可獲缺的主要電路。然而電流驅動式數位類比轉換器因為製程不匹配效能往往受靜態和動態線性度限制。在本篇論文,主要設計一個簡單的隨機架構去改善製程不匹配。我們利用多輸入多輸出多工器架構再配合隨機產生器讓原本固定的線路去隨機改變,再配合特殊的電流源開關的佈局去改善不同製程的改變,我們可以打亂諧波,將能量平均分散到noise floor而增加SFDR。
本論文是配合上述簡單隨機架構的一個12位元250MHz數位類比轉換器,在數位類比轉換器電路的實現,切換電流源式是一個很好的實現方法。在數位類比轉換器中包含在較低的4位元為2進位權重架構和較高的8位元為含有隨機匹配的溫度計編碼架構。除此之外,為了增進數位類比轉換器的動態效能及提高解析度與元件間的匹配,分別使用了抑制突波的拴鎖器和特殊的佈局,來增加數位類比轉換器的效能。同時也考量了在佈局繞線時產生的寄生電容,所造成速度還有信號不同步的效應。數位類比轉換器採用TSMC 0.18 µm 1P6M mixed‐signal CMOS 製程來實現,沒有部分隨機架構整體晶片的面積為1.788 mm2,另外有含部份隨機架構整體晶片面積為1.838 mm2。
Current-Steering digital-to-analog converters (DACs) are very significant blocks of nowadays high-performance systems, such as data communication links using multilevel signaling. However, these current-steering DACs suffer from the element mismatch of technologies and this limits both the static and dynamic performance. This thesis proposes a simple random structure to improve the element mismatch is presented. We can use a multiplexer with 8-bit input and 8-bit output, to implement the random selection. The random generator controls the selection of the element in the MSB part so that the harmonics caused by mismatch can be attenuated. The simple random structure can be used to randomize tones such that spurious-free dynamic range is increased. To cooperate with a special geometrical arrangement of unit cells in the current sources of the MSB, along with a new switching sequence, results in full cancellation of gradient errors.
Utilizing the simple random structure, a 12-bit 250-MSample/s current-steering D/A converter is implemented in this thesis. The DAC includes a 4-bit binary-coded LSBs, 8-bit MSBs with thermometer decoders, and random element matching. The differential switches of current sources are controlled by de-glitch latch. The routing complexity and parasitic capacitance have to be considered for speed and signal synchronization.
12-bit current-steering D/A converters in a TSMC 0.18μm CMOS technology are presented. The simulation results of a 12-bit current-steering D/A converter with the partial random element matching show that with the signal frequency of 100.83 MHz at the update rate of 250 MHz, the SFDR is 66.4 dB. The differential nonlinearity and integral nonlinearity are below 0.5 and 0.7 least significant bits (LSB’s), respectively. The converter consumers a total power of 75 mW and its active area is 1.838 mm2. The simulation results of D/A converter without the partial random element matching shows that with the signal frequency of 100 MHz at the update rate of 500 MHz, the SFDR is 68.9 dB. The differential nonlinearity and integral nonlinearity are below 0.8 and 0.8 LSB’s, respectively. The converter consumers a total power of 73 mW and its active area is 1.788 mm2.
Table of Contents
Abstract (Chinese) I
Abstract (English) II
Acknowledgment IV
Table of Contents V
List of Figures VII
List of Tables XI
Chapter 1. Introduction1
1.1Motivation 1
1.2Organization 2
Chapter 2. Nyquist-Rate Digital-to-Analog Converter 3
2.1 Ideal D/A converter 3
2.2 Performance Metrics 4
2.2.1 Static Performance 4
2.2.2 Dynamic Performance 9
2.2.3 Dynamic range 11
2.3 Binary Weighted DAC Architecture 12
2.3.1 R-2R Ladder DAC 13
2.3.2 Charge Redistribution DAC 14
2.3.3 Current-Mode DAC 15
2.4 Thermometer Coded DAC Architecture 17
2.5 Hybrid DAC Architecture 18
2.6 Summary 19
Chapter 3. System Analysis of DAC Design 20
3.1 Major Error Sources in Current-steering DACs 20
3.2 Finite output impedance of current source 21
3.3 Current Source Mismatch 24
3.4 Switched Gate Driver 31
3.5 Random routing 33
3.6 Summary 36
Chapter 4. Circuit Design of DAC 37
4.1 The System Structure of DAC 37
4.2 Digital Circuits 39
4.2.1 Thermometer decoder 40
4.2.2 Randomizer 41
4.2.3 High speed latch 43
4.3 Current Cell 45
4.3.1 Implementation of Switch Unit Current Cell 45
4.3.2 Reference Current Generation 47
4.4 Layout 48
4.5 Summary 54
Chapter 5. Simulation and Measurement Results 55
5.1 Simulation results 55
5.2 Test Circuits 59
5.3 Measurement Results 61
Chapter 6. Conclusions and Future Work 66
Reference 68
References

[1] Mikael Gustavsson, J Jacob Wikner and Nianziong Nick Tan, “CMOS Data Converters for communications,” Kluwer Academic Publishers, Boston,2000.
[2] Farzen K., Johns D.A., “A power-efficient architecture for high-speed D/A Converters,” Circuits and System, 2003. ISCAS ’03. Proceedings of the 2003 International Symposium on, Volume”1,25-28 May 2003 Pages: I-897 – I-900 vol.1.
[3] J. Bastos, M. Steyaert, and W. Sansen, “A high yield 12-bit 250-MS/s CMOS D/A converter,” in Proc. IEEE 1996 CICC, May 1996, pp. 431-434.
[4] A. R. Bugeja, B.-S. Song, P. L. Rakers, and S. F. Gilling, “A 14b 100 MSample/s CMOS DAC designed for spectral performance,” in Proc. IEEE1999 ISSCC, Feb. 1999, pp. 148-149.
[5] C-H. Lin and K. Bult, “A 10b 500MSamples/s CMOS DAC in 0.6mm2,” IEEE J. Solid-State Circuits, vol. 33, pp. 1948-1958, Dec. 1998.
[6] J. Bastos, A. Marques, M. Steyaert and W. Sansen, “A 12-bit intrinsic accuracy high-speed CMOS DAC,” IEEE J.Solid-State Circuits, vol. 33, pp. 1959-1968, Dec. 1998.
[7] A. Van den Bosch, M. Borremans, M. Steyaert, and W. Sansen, “A 12b 500 MSamples/s current-steering CMOS D/A converter,” in IEEE Int. Solid-State Circuits Dig. Tech. Papers, Feb. 2001, pp. 366-367.
[8] G. Van Der Plas, J. Vandenbussche, W. Sansen, M. Steyaert, and G. Gielen, “A 14-bit intrinsic accuracy Q2 random walk CMOS DAC,” IEEE J. Solid-State Circuits, vol. 34, pp. 1708–1717, Dec. 1999.
[9] J. Hyde, T. Humes, C. Diorio, M. Thomas, and M. Figueroa, “A 300-MS/s 14-bit digital-to-analog converter in logic CMOS,” IEEE J. Solid-State Circuits, vol. 38, pp. 734–740, May 2003.
[10] Morteza Vadipour, “Gradient Error Cancellation and Quadratic Error Reduction in Unary and Binary D/A Converters,” IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, vol. 50,no. 12, Dec. 2003.
[11] Kevin O’Sullivan, Chris Gorman, Michael Hennessy, and Vincent Callaghan, “ A 12-bit 320-MSample/s Current-Steering CMOS D/A Converter in 0.44 mm2 ,” IEEE J. Solid-State Circuits, vol. 39, no. 7, JULY 2004.
[12] Jurgen Deveugele, Geert Van der Plas, Michiel Steyaert,Georges Gielen, and Willy Sansen, “A Gradient-Error and Edge-Effect Tolerant Switching Scheme for a High-Accuracy DAC,” IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, vol. 51, no. 1, JANUARY 2004.
[13] K. Lakshmikumar, R. Hadaway, ad M. Copeland, “Characterization and modeling of mismatch in MOS transistors for precision analog design,” IEEE J. Solid-State Circuits, vol. SC-21, pp. 1057-1066, Dec. 1986.
[14] M. J. M. Pelgrom, A.C. J. Duinmaijer, and A. P. G. Welbers, “Matching properties of MOS transistors,” IEEE J. Solid-State Circuits, vol. 24, pp. 1433-1439, Oct.1989.
[15] Yonghua Cong and Randall L. Geiger, “A 1.5-V 14-Bit 100-MS/s Self-Calibrated DAC ,” IEEE J. Solid-State Circuits, vol. 38,no. 12, Dec. 2003.
[16] Douglas A. Mercer, “Low-Power Approaches to High-Speed Current-Steering Digital-to-Analog Converters in 0.18-_m CMOS ,” IEEE J. Solid-State Circuits, VOL. 42, NO. 8, AUG 2007.
[17] Mika P. Tiilikainen, “A 14-bit 1.8-V 20-mW 1-mm2 CMOS DAC,” IEEE J. Solid-State Circuits, vol. 36, no. 7, JULY 2001.
[18] Alex R. Bugeja, and Bang-Sup Song, “A Self-Trimming 14-b 100-MS/s CMOS DAC,” IEEE J. Solid-State circuits, vol. 35, pp. 1841-1852, Dec. 2000.
[19] Henrik T. Jensen, and Ian Galton,“A Low-Complexity Dynamic Element Matching DAC for Direct Digital Synthesis,” IEEE TRANSACTIONS ON CIRCUITS AND SYSTEM, VOL. 45, NO. 1, JAN 1998
[20] Behzad Razavi, “Design of Analog CMOS Integrated Circuit Design,” McGraw-Hill,2001.
[21] John W. Harris and Horst Stocker. , “Handbook of mathematics and computational science,” New York ,Springer,1998.
[22] J Ronald L. Graham, Donald E. Knuth and Oren Patashnik. , “Concrete mathematics /a foundation for computer science,” Addison-Wesley,1994.
[23] L. R. Carley, “A noise shaping coder topology for 15+ bits converters,” IEEE J. Solid-State Circuits, vol. 24, pp. 267–273, Apr. 1989.
[24] Behzad Razavi, “Principles of Data Conversion System Design,” NJ:IEEE Press,1995.
[25] R. JACOB BAKER, “CMOS (CIRCUIT DESIGN, LAYOUT, AND SIMULATION),” NJ:IEEE Press,2005.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔